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Abstract

For any two vertices x and y in a connected graph G, an x–y path is a monophonic path if it contains no chord, and a longest x–y
monophonic path is called an x–y detour monophonic path. For any vertex x in G, a set Sx ⊆ V (G) is an x-detour monophonic
set of G if each vertex v ∈ V (G) lies on an x–y detour monophonic path for some element y in Sx . The minimum cardinality
of an x-detour monophonic set of G is the x-detour monophonic number of G, denoted by dmx (G). A subset Tx of a minimum
x-detour monophonic set Sx of G is an x-forcing subset for Sx if Sx is the unique minimum x-detour monophonic set containing
Tx . An x-forcing subset for Sx of minimum cardinality is a minimum x-forcing subset of Sx . The forcing x-detour monophonic
number of Sx , denoted by fdmx (Sx ), is the cardinality of a minimum x-forcing subset for Sx . The forcing x-detour number of G
is fdmx (G) = min{ fdmx (Sx )}, where the minimum is taken over all minimum x-detour monophonic sets Sx in G. We determine
bounds for it and find the same for some special classes of graphs. Also we show that for every pair s, t of integers with 2 ≤ s ≤ t ,
there exists a connected graph G such that fdmx (G) = s and dmx (G) = t for some vertex x in G.
c⃝ 2016 Publishing Services by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

By a graph G = (V, E) we mean a non-trivial finite undirected connected graph without loops or multiple edges.
The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology we refer to
Harary [1]. For vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest x − y path in G.
An x − y path of length d(x, y) is called an x − y geodesic. The neighborhood of a vertex v is the set N (v) consisting
of all vertices u which are adjacent with v. The closed neighborhood of a vertex v is the set N [v] = N (v) ∪ {v}.
A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete.

The closed interval I [x, y] consists of all vertices lying on some x − y geodesic of G, while for S ⊆ V ,
I [S] =


x,y∈S I [x, y]. A set S of vertices is a geodetic set if I [S] = V , and the minimum cardinality of a geodetic

Peer review under responsibility of Kalasalingam University.
✩ Research supported by DST Project No. SR/S4/MS: 570/09.
∗ Corresponding author.

E-mail addresses: titusvino@yahoo.com (P. Titus), gangaibala1@yahoo.com (P. Balakrishnan).

http://dx.doi.org/10.1016/j.akcej.2016.03.002
0972-8600/ c⃝ 2016 Publishing Services by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2016.03.002&domain=pdf
http://www.elsevier.com/locate/akcej
http://dx.doi.org/10.1016/j.akcej.2016.03.002
http://www.elsevier.com/locate/akcej
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:titusvino@yahoo.com
mailto:gangaibala1@yahoo.com
http://dx.doi.org/10.1016/j.akcej.2016.03.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


P. Titus, P. Balakrishnan / AKCE International Journal of Graphs and Combinatorics 13 (2016) 76–84 77

Fig. 2.1. The graph G in Example 2.2.

set is the geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set of G. The geodetic number of a
graph was introduced in [2] and further studied in [3–5].

The concept of vertex geodomination in graphs was introduced in [6] and further studied in [7]. Let x be a vertex
of a connected graph G. A set S of vertices of G is an x-geodominating set of G if each vertex v of G lies on an x − y
geodesic in G for some element y in S. The minimum cardinality of an x-geodominating set of G is defined as the
x-geodomination number of G and is denoted by gx (G).

A chord of a path P is an edge joining any two non-adjacent vertices of P . A path P is called a monophonic
path if it is a chordless path. A longest x − y monophonic path P is called an x − y detour monophonic path. The
monophonic distance dm(u, v) from u to v is defined as the length of a longest u −v monophonic path (or u −v detour
monophonic path) in G. The monophonic eccentricity em(v) of a vertex v in G is em(v) = max{dm(v, u) : u ∈ V (G)}.
The monophonic radius, radm G of G is radm G = min{em(v) : v ∈ V (G)} and the monophonic diameter, diamm G
of G is diamm G = max{em(v) : v ∈ V (G)}. The monophonic distance was introduced in [8] and further studied
in [9].

The concept of vertex detour monophonic number was introduced in [10]. Let x be a vertex of a connected graph G.
A set S of vertices of G is an x-detour monophonic set of G if each vertex v of G lies on an x − y detour monophonic
path in G for some element y in S. The minimum cardinality of an x-detour monophonic set of G is defined as the
x-detour monophonic number of G and is denoted by dmx (G). An x-detour monophonic set of cardinality dmx (G)

is called a dmx -set of G.

2. Forcing vertex detour monophonic number

Let x be any vertex of a connected graph G. Although G contains a minimum x-detour monophonic set there are
connected graphs which may contain more than one minimum x-detour monophonic set. For example the graph G
given in Fig. 2.1 contains more than one minimum x-detour monophonic set. For each minimum x-detour monophonic
set Sx in a connected graph G there is always some subset Tx of Sx that uniquely determines Sx as the minimum
x-detour monophonic set containing Tx . Such sets are called “vertex forcing subsets” and we discuss these sets in this
section. Also, forcing concepts have been studied for such diverse parameters in graphs as the graph reconstruction
number [11], the domination number [12], and the geodetic number [13].

Definition 2.1. Let x be a vertex of a connected graph G and let Sx be a minimum x-detour monophonic set of G.
A subset Tx of Sx is called an x-forcing subset for Sx if Sx is the unique minimum x-detour monophonic set containing
Tx . An x-forcing subset for Sx of minimum cardinality is a minimum x-forcing subset of Sx . The forcing x-detour
monophonic number of Sx , denoted by fdmx (Sx ), is the cardinality of a minimum x-forcing subset of Sx . The forcing
x-detour monophonic number of G is fdmx (G) = min{ fdmx (Sx )}, where the minimum is taken over all minimum
x-detour monophonic sets Sx in G.

Example 2.2. For the graph G given in Fig. 2.1, the minimum vertex detour monophonic sets, the vertex detour
monophonic numbers, the minimum forcing vertex detour monophonic sets and the forcing vertex detour monophonic
numbers are given in Table 2.1.

The next theorem immediately follows from the definition of x-detour monophonic number and forcing x-detour
monophonic number of a graph G.

Theorem 2.3. For any vertex x in a connected graph G, 0 ≤ fdmx (G) ≤ dmx (G).
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