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a b s t r a c t

Let α1(G) denote the maximum size of an edge set that contains at most one edge from
each triangle of G. Let τB(G) denote the minimum size of an edge set whose deletion
makes G bipartite. It was first conjectured by Lehel and later independently by Puleo that
α1(G) + τB(G) ≤ n2/4 for every n-vertex graph G. Puleo showed that α1(G) + τB(G) ≤

5n2/16 for every n-vertex graph G. In this note, we improve the bound by showing that
α1(G) + τB(G) ≤ 4403n2/15000 for every n-vertex graph G.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple undirected graph. A triangle-independent set in G is an edge set that contains at most one edge from each
triangle of G. We let α1(G) denote the maximum size of a triangle-independent set in G. On the other hand, a triangle edge
cover in G is an edge set that contains at least one edge from each triangle of G. We let τ1(G) denote the minimum size of a
triangle edge cover in G.

Erdős, Gallai, and Tuza made the following conjecture:

Conjecture 1.1 (Erdős–Gallai–Tuza [10]). For every n-vertex graph G, α1(G) + τ1(G) ≤ n2/4.

Note that the equality holds for the graphs Kn and Kn/2,n/2, where n is even. Indeed, α1(Kn) = n/2 and τ1(Kn) =
( n
2

)
−n2/4

(by Mantel’s theorem [13]), while α1(Kn/2,n/2) = n2/4 and τ1(Kn/2,n/2) = 0. In both cases, α1(G) + τ1(G) = n2/4. More
generally, let G1 ∨ · · · ∨ Gt denote the graph obtained from the disjoint union G1 + · · · + Gt by adding all edges between
vertices from different Gi. Puleo (see [16,15]) showed that the equality holds for any graph of the form Kr1,r1 ∨ · · · ∨ Krt ,rt .

Conjecture 1.1 was originally stated only for triangular graphs, which are graphs where every edge lies in a triangle (see
[10,7]). However, later it was stated for general graphs (see [8,19]). It was proved by Puleo [15] that these two forms of the
conjecture are equivalent.

A related parameter, denoted by τB(G), is the minimum size of an edge set in Gwhose deletion makes G bipartite. Clearly
τB(G) ≥ τ1(G). Erdős [6] asked which graphs satisfy τB(G) = τ1(G). Bondy, Shen, Thomassé, and Thomassen [3] proved
that τB(G) = τ1(G) when δ(G) ≥ 0.85 |V (G)|, and later Balogh, Keevash, and Sudakov [2] proved that τB(G) = τ1(G) when
δ(G) ≥ 0.79 |V (G)|.

The following conjecture, which is stronger than Conjecture 1.1, was first proposed by Lehel (see [7]) and later
independently by Puleo [16].

Conjecture 1.2 ([16]). For every n-vertex graph G, α1(G) + τB(G) ≤ n2/4.

Puleo [16,15] obtainedmany interesting results towards Conjectures 1.1 and 1.2. Conjecture 1.2 was verified for triangle-
free graphs and for graphs that have no induced subgraph isomorphic to K−

4 (the graph obtained from K4 by deleting an
edge) [15]. For general graphs, Puleo [16] showed the following upper bound:
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Theorem 1.3 ([16]). For every n-vertex graph G, α1(G) + τB(G) ≤ 5n2/16.

The main purpose of this note is to provide an improved bound towards Conjecture 1.2. We prove that α1(G) + τB(G) ≤

4403n2/15000 for every n-vertex graph G. We use ideas from [15,16,17], and [12]. It should be noted that after this paper
was submitted, we were informed that Conjecture 1.2 was recently proved by Sergey Norin and Yue Ru Sun [14].

We shall use the following notation and terminology. For shorthand, we let fB(G) = α1(G) + τB(G). We let n(G), e(G), and
t(G) denote the number of vertices, edges, and triangles in G, respectively. When there is no confusion involved, we simply
write n, e, and t . We let d(v) denote the degree of a vertex v, and ω(G) denote the clique number of G. When S ⊆ V (G), we
write G[S] for the subgraph of G induced by S, S for the set V (G)− S, and [S, S] for the set of all edges with one endpoint in S
and the other endpoint in S. We use the term minimal counterexample to refer to a vertex-minimal counterexample, that is,
a graph G such that the property in question holds for every proper induced subgraph of G but does not hold for G.

The rest of the paper is organized as follows. In the next section,we investigate the structure of aminimal counterexample
to fB(G) ≤ cn(G)2 where c > 1/4. We show that the clique number of such a counterexample is bounded by a function of
c. Thus, to prove that fB(G) ≤ cn(G)2, we only need to prove it for graphs with small clique number. Then in Section 3 we
present a quick proof of fB(G) ≤ 3n(G)2/10, which improves Theorem 1.3. In Section 4 we give some bounds on τB(G) for
K6-free graphs. In particular, we show that every n-vertex K6-free graph can bemade bipartite by deleting at most 17n2/100
edges. In Section 5 we prove our main result.

2. fB(G) and clique number

We need the following lemma from [15].

Lemma 2.1 ([15]). Let G be a graph, and let A be a triangle-independent set of edges in G. If S is a nonempty proper subset of
V (G), then

fB(G) ≤ fB(G[S]) + fB(G[S]) +
1
2

⏐⏐[S, S]⏐⏐+ ⏐⏐[S, S] ∩ A
⏐⏐ .

In [15], Puleo used Lemma 2.1 to prove some conclusions on the structure of a minimal counterexample G to
Conjecture 1.2. By slightly extending his argument, we show the following:

Lemma 2.2. For any constant c > 1/4, if G is a minimal counterexample to fB(G) ≤ cn(G)2, then ω(G) < 1/(4c − 1).

Proof. Let G be a minimal counterexample to fB(G) ≤ cn(G)2. We may assume n(G) ≥ 5, since it is easy to verify that
fB(G) ≤ n(G)2/4 ≤ cn(G)2 when n(G) ≤ 4. Let K be the largest clique in G, and let k = |K | = ω(G). Since fB(G) ≤

n(G)2/4 ≤ cn(G)2 when G is complete, we may assume 1 ≤ k ≤ n(G) − 1.
For simplicity, write n for n(G). Let A be any triangle-independent set in G, and for every v ∈ V (G), let NA(v) = {w ∈

V (G) : vw ∈ A}. Since A is triangle-independent, |NA(v) ∩ K | ≤ 1 for each v ∈ K . It follows that
⏐⏐[K , K ] ∩ A

⏐⏐ ≤ n − k. By
Lemma 2.1 and the minimality of G, we have

cn2 < fB(G) ≤ fB(G[K ]) + fB(G[K ]) +
1
2

⏐⏐[K , K ]
⏐⏐+ ⏐⏐[K , K ] ∩ A

⏐⏐
≤

k2

4
+ c(n − k)2 +

1
2

⏐⏐[K , K ]
⏐⏐+ n − k.

Thus,
⏐⏐[K , K ]

⏐⏐ > −(2c +
1
2 )k

2
+ 4cnk+ 2k− 2n. However, since K is the largest clique of G,

⏐⏐[K , K ]
⏐⏐ ≤ (n− k)(k− 1). Hence,

we have

(n − k)(k − 1) > −

(
2c +

1
2

)
k2 + 4cnk + 2k − 2n.

The inequality above simplifies to ( 12 − 2c)k2 + k < (1 − (4c − 1)k) n. Suppose to the contrary that k ≥ 1/(4c − 1). Then
(1 − (4c − 1)k) n ≤ (1 − (4c − 1)k) k. It follows that ( 12 − 2c)k2 + k < (1 − (4c − 1)k) k. That is, c < 1/4, a
contradiction. □

3. A first improvement

In this section we present a quick proof of fB(G) ≤ 3n(G)2/10. We first show that the conclusion holds for K5-free graphs,
and then use Lemma 2.2 to prove that it holds for all graphs.

For a graph G, let b(G) denote the largest size of a vertex set B such that B induces a bipartite subgraph of G. Puleo [16]
proved the following bound on α1(G):

Lemma 3.1 ([16]). For every n-vertex graph G, α1(G) ≤ nb(G)/4.
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