Contents lists available at ScienceDirect

### **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

# Degree sum conditions for path-factors with specified end vertices in bipartite graphs



Ryota Matsubara <sup>a,\*</sup>, Hajime Matsumura <sup>b</sup>, Masao Tsugaki <sup>c</sup>, Tomoki Yamashita <sup>d</sup>

<sup>a</sup> Department of Mathematics, Shibaura Institute of Technology, 307 Fukasaku, Saitama, 337-8577, Japan

<sup>b</sup> College of Education, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan

<sup>c</sup> Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo, Japan

<sup>d</sup> Department of Mathematics, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

#### ARTICLE INFO

Article history: Received 5 March 2016 Received in revised form 16 July 2016 Accepted 21 July 2016

#### ABSTRACT

Let *G* be a graph, and let *S* be a subset of the vertex set of *G*. We denote the set of the end vertices of a path *P* by end(P). A path *P* is an *S*-path if  $|V(P)| \ge 2$  and  $V(P) \cap S = end(P)$ . An *S*-path-system is a graph *H* such that *H* contains all vertices of *S* and every component of *H* is an *S*-path. In this paper, we give a sharp degree sum condition for a bipartite graph to have a spanning *S*-path-system.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

Keywords: Path-factor Bipartite graph Degree sum condition

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges. Let *G* be a graph, and let *S* be a subset of the vertex set of *G*. We write |G| for the order of *G*, that is, |G| = |V(G)|. A spanning subgraph *H* of *G* is called a *path-factor* if every component of *H* is a path of order at least two. Akiyama, Avis and Era [1] gave a necessary and sufficient condition for the existence of path-factors. They proved that a graph *G* has a path-factor if and only if  $i(G \setminus X) \le 2|X|$  for all  $X \subseteq V(G)$ , where  $i(G \setminus X)$  denotes the number of isolated vertices in  $G \setminus X$ . We denote the set of the end vertices of a path *P* by *end*(*P*). A path *P* is an *S*-path if  $|P| \ge 2$  and  $V(P) \cap S = end(P)$ . An *S*-path-system is a graph *H* such that *H* contains all vertices of *S* and every component of *H* is an *S*-path. Gallai [2] gave a necessary and sufficient condition for the existence of *S*-path-systems. He proved that for a graph *G* and a subset *S* of V(G) with even order, *G* has an *S*-path-system if and only if  $|S|/2 \le |X| + \sum_{D \in cmp(G \setminus X)} \lfloor |D \cap S|/2|$  for all  $X \subseteq V(G)$ , where  $cmp(G \setminus X)$  denotes the set of components in  $G \setminus X$ . (In fact, he gave a min-max formula.) On the other hand, a spanning *S*-path-system can be regarded as a path-factor with specified end vertices. It is known that the problem of determining whether a given graph has a spanning *S*-path-systems.

A spanning S-path-system is closely related to a Hamiltonian cycle passing through specified edges. In 1969, Kronk gave a degree sum condition for the existence of a Hamiltonian cycle passing through specified paths. Let  $\sigma_2(G)$  be the minimum degree sum of two non-adjacent vertices of G if G is not complete; otherwise  $\sigma_2(G) := \infty$ . A *linear forest* is a graph in which every component is a path.

\* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.07.015 0012-365X/© 2016 Elsevier B.V. All rights reserved.

*E-mail addresses:* ryota@sic.shibaura-it.ac.jp (R. Matsubara), hajime.matsumura.math@vc.ibaraki.ac.jp (H. Matsumura), tsugaki@hotmail.com (M. Tsugaki), yamashita@math.kindai.ac.jp (T. Yamashita).

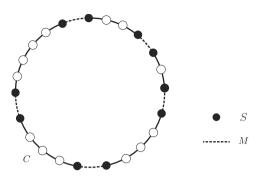


Fig. 1. A spanning S-path-system.

**Theorem 1** (Kronk [3]). Let G be a graph, and let F be a linear forest in G with |E(F)| = m. If  $\sigma_2(G) \ge |G| + m$ , then G has a Hamiltonian cycle passing through F.

Recently, the fourth author [4] pointed out that it is easy to obtain the following result by using Theorem 1.

**Theorem 2.** Let G be a graph and let  $S \subseteq V(G)$  such that |S| = 2k. If  $\sigma_2(G) \ge |G| + k$ , then G has a spanning S-path-system.

For the convenience of the readers, we give the proof. For  $S \subseteq V(G)$ , we denote by G[S] the subgraph induced by S in G.

**Proof.** We construct a graph *H* from *G* by adding edges so that H[S] has a perfect matching *M*. Note that  $\sigma_2(H) \ge \sigma_2(G) \ge |G| + k \ge |H| + |M|$ . By Theorem 1, *H* has a Hamiltonian cycle *C* passing through *M*. Then C - M is a spanning *S*-path-system of *G* (see Fig. 1).  $\Box$ 

In this paper, we focus on a degree sum condition for the existence of spanning *S*-path-systems in bipartite graphs. We denote by G[A, B] a bipartite graph *G* with partite sets *A* and *B*. We call G[A, B] with |A| = |B| a balanced bipartite graph. For a bipartite graph G[A, B], we define

 $\sigma_{1,1}(G) = \min\{d_G(a) + d_G(b) : a \in A, b \in B, ab \notin E(G)\}$ 

if *G* is not complete; otherwise  $\sigma_{1,1}(G) = \infty$ .

In 2012, Zamani and West proved a bipartite version of Theorem 1.

**Theorem 3** (*Zamani and West* [5]). Let *G*[*A*, *B*] be a balanced bipartite graph, and let *F* be a linear forest in *G* with *m* edges forming  $t_1$  paths of odd length and  $t_2$  paths of positive even length. If  $\sigma_{1,1}(G) \ge (|G| + m)/2 + \epsilon$ , then *G* has a Hamiltonian cycle passing through *F*, where  $\epsilon = 1$  if  $t_1 = 0$  or  $(t_1, t_2) \in \{(1, 0), (2, 0)\}$ ; otherwise  $\epsilon = 0$ .

By similar argument as in the proof of Theorem 2, we can prove the following theorem by using Theorem 3.

**Theorem 4.** Let G[A, B] be a bipartite graph such that  $|A| \leq |B|$ , and let S be a set of vertices such that |S| = 2k and  $|A \setminus S| - |B \setminus S| = |B| - |A|$ .

(1) If  $|S \cap A| = |S \cap B| = 1$ , then we let  $2\sigma_{1,1}(G) \ge |G| + 4 = |G| + k + 3$ .

- (2) If  $|S \cap A| = 0$  or  $|S \cap A| = |S \cap B| = 2$ , then we let  $2\sigma_{1,1}(G) \ge |G| + k + 2$ .
- (3) Otherwise, we let  $2\sigma_{1,1}(G) \ge |G| + k$ .

Then G has a spanning S-path-system.

But, this degree sum condition is not best possible in the case where  $|S \cap A| = |S \cap B| = 2$  and  $|G| \neq 10$ . It seems to be difficult to give a sharp degree sum condition by using Theorem 3. Therefore we give it without using Theorem 3.

**Theorem 5.** Let *k* be a positive integer. Let *G*[*A*, *B*] be a bipartite graph such that  $|A| \le |B|$ , and let *S* be a set of vertices such that |S| = 2k and  $|A \setminus S| - |B \setminus S| = |B| - |A|$ .

- (1) If  $|S \cap A| = |S \cap B| = 1$ , then we let  $2\sigma_{1,1}(G) \ge |G| + 4 = |G| + k + 3$ .
- (2) If  $|S \cap A| = 0$ , or  $|S \cap A| = |S \cap B| = 2$  and |G| = 10, then we let  $2\sigma_{1,1}(G) \ge |G| + k + 2$ .
- (3) Otherwise, we let  $2\sigma_{1,1}(G) \ge |G| + k$ .

Then G has a spanning S-path-system.

The condition  $|A \setminus S| - |B \setminus S| = |B| - |A|$  is a necessity condition for the existence of a spanning *S*-path-system. In Section 2, we will discuss it and the sharpness of the degree sum condition. In Section 3 and Section 4, we will give the proofs of Theorem 4 and Theorem 5, respectively.

Download English Version:

## https://daneshyari.com/en/article/4646560

Download Persian Version:

https://daneshyari.com/article/4646560

Daneshyari.com