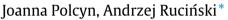
Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Refined Turán numbers and Ramsey numbers for the loose 3-uniform path of length three



A. Mickiewicz University, Poznań, Poland

ARTICLE INFO

Article history: Received 24 November 2015 Received in revised form 15 July 2016 Accepted 1 August 2016

Keywords: 3-uniform hypergraphs

ABSTRACT

Let *P* denote a 3-uniform hypergraph consisting of 7 vertices *a*, *b*, *c*, *d*, *e*, *f*, *g* and 3 edges $\{a, b, c\}, \{c, d, e\}, and \{e, f, g\}$. It is known that the *r*-color Ramsey number for *P* is R(P; r) = r + 6 for $r \leq 7$. The proof of this result relies on a careful analysis of the Turán numbers for *P*. In this paper, we refine this analysis further and compute, for all *n*, the third and fourth order Turán numbers for *P*. With the help of the former, we confirm the formula R(P; r) = r + 6 for $r \in \{8, 9\}$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For brevity, 3-uniform hypergraphs will be called here 3-*graphs*. Given a family of 3-graphs \mathcal{F} , we say that a 3-graph H is \mathcal{F} -free if for all $F \in \mathcal{F}$ we have $H \supseteq F$.

For a family of 3-graphs \mathcal{F} and an integer $n \ge 1$, the *Turán number of the 1st order*, that is, the ordinary Turán number, is defined as

$$ex^{(1)}(n; \mathcal{F}) = max\{|E(H)| : |V(H)| = n \text{ and } H \text{ is } \mathcal{F} \text{ -free }\}.$$

Every *n*-vertex \mathcal{F} -free 3-graph with $ex^{(1)}(n; \mathcal{F})$ edges is called 1-*extremal for* \mathcal{F} . We denote by $Ex^{(1)}(n; \mathcal{F})$ the family of all, pairwise non-isomorphic, *n*-vertex 3-graphs which are 1-extremal for \mathcal{F} . Further, for an integer $s \ge 1$, *the Turán number of the* (s + 1)-st order is defined as

 $ex^{(s+1)}(n; \mathcal{F}) = max\{|E(H)| : |V(H)| = n, H \text{ is } \mathcal{F}\text{-free, and } \forall H' \in Ex^{(1)}(n; \mathcal{F}) \cup \cdots \cup Ex^{(s)}(n; \mathcal{F}), H \not\subseteq H'\},\$

if such a 3-graph *H* exists. Note that if $ex^{(s+1)}(n; \mathcal{F})$ exists then, by definition,

$$\mathrm{ex}^{(s+1)}(n;\,\mathcal{F}) < \mathrm{ex}^{(s)}(n;\,\mathcal{F}).$$

An *n*-vertex \mathcal{F} -free 3-graph *H* is called (s + 1)-extremal for \mathcal{F} if $|E(H)| = ex^{(s+1)}(n; \mathcal{F})$ and $\forall H' \in Ex^{(1)}(n; \mathcal{F}) \cup \cdots \cup Ex^{(s)}(n; \mathcal{F})$, $H \not\subseteq H'$; we denote by $Ex^{(s+1)}(n; \mathcal{F})$ the family of *n*-vertex 3-graphs which are (s + 1)-extremal for \mathcal{F} . In the case when $\mathcal{F} = \{F\}$, we will write *F* instead of $\{F\}$.

A loose 3-uniform path of length 3 is a 3-graph P consisting of 7 vertices, say, a, b, c, d, e, f, g, and 3 edges {a, b, c}, {c, d, e}, and {e, f, g}. The Ramsey number R(P; r) is the least integer n such that every r-coloring of the edges of the complete 3-graph K_n results in a monochromatic copy of P. Gyárfás and Raeisi [6] proved, among many other results, that R(P; 2) = 8. (This result was later extended to loose paths of arbitrary lengths, but still r = 2, in [13].) Then Jackowska [9] showed that R(P; 3) = 9 and $r + 6 \leq R(P; r)$ for all $r \geq 3$. In turn, in [10] and [11], Turán numbers of the first and second order, ex⁽¹⁾(n; P)

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.08.006 0012-365X/© 2016 Elsevier B.V. All rights reserved.

CrossMark

E-mail addresses: joaska@amu.edu.pl (J. Polcyn), rucinski@amu.edu.pl (A. Ruciński).

and $ex^{(2)}(n; P)$, have been determined for all feasible values of *n*, as well as the single third order Turán number $ex^{(3)}(12; P)$. Using these numbers, in [11], we were able to compute the Ramsey numbers *R*(*P*; *r*) for *r* = 4, 5, 6, 7.

Theorem 1 ([6,9,11]). For all $r \leq 7$, R(P; r) = r + 6.

In this paper we determine, for all $n \ge 7$, the Turán numbers for *P* of the third and the fourth order, $ex^{(3)}(n; P)$ and $ex^{(4)}(n; P)$. The former allows us to compute two more Ramsey numbers.

Theorem 2. *For all* $r \leq 9$, R(P; r) = r + 6.

It seems that in order to make a further progress in computing the Ramsey numbers R(P; r), $r \ge 10$, one would need to determine higher order Turán numbers $ex^{(s)}(n; P)$, at least for some small values of n. Unfortunately, the fourth order numbers are not good enough.

Throughout, we denote by S_n the 3-graph on n vertices and with $\binom{n-1}{2}$ edges, in which one vertex, referred to as *the center*, forms edges with all pairs of the remaining vertices. Every sub-3-graph of S_n without isolated vertices is called *a star*, while S_n itself is called *the full star*. We denote by *C the triangle*, that is, a 3-graph with six vertices *a*, *b*, *c*, *d*, *e*, *f* and three edges $\{a, b, c\}, \{c, d, e\},$ and $\{e, f, a\}$. Finally, *M* stands for a pair of disjoint edges.

In the next section we state all, known and new, results on ordinary and higher order Turán numbers for *P*, including Theorem 9 which provides a complete formula for $ex^{(3)}(n; P)$. We also define conditional Turán numbers and quote from [11] three useful lemmas about the conditional Turán numbers with respect to *P*, *C*, *M*. Then, in Section 3, we prove Theorem 2, while the remaining sections are devoted to proving Theorem 9.

2. Turán numbers

A celebrated result of Erdős, Ko, and Rado [2] asserts that for $n \ge 6$, $ex^{(1)}(n; M) = \binom{n-1}{2}$. Moreover, for $n \ge 7$, $Ex^{(1)}(n; M) = \{S_n\}$. We will need the second order version of this Turán number, together with the 2-extremal family. Such a result has been proved already by Hilton and Milner [8, Theorem 3, s = 1] (see [4] for a simple proof). For a given set of vertices *V*, with $|V| = n \ge 7$, let us define two special 3-graphs. Let $x, y, z, v \in V$ be four different vertices of *V*. We set

$$G_{1}(n) = \{\{x, y, z\}\} \cup \left\{h \in \binom{V}{3} : v \in h, h \cap \{x, y, z\} \neq \emptyset\right\}$$
$$G_{2}(n) = \{\{x, y, z\}\} \cup \left\{h \in \binom{V}{3} : |h \cap \{x, y, z\}| = 2\right\}.$$

Note that for $i \in \{1, 2\}$, $G_i(n) \not\supseteq M$ and $|G_i(n)| = 3n - 8$.

Theorem 3 ([8]). For
$$n \ge 7$$
, $ex^{(2)}(n; M) = 3n - 8$ and $Ex^{(2)}(n; M) = \{G_1(n), G_2(n)\}$.

Later, we will also use the fact that $C \subset G_i(n) \not\supseteq P$, i = 1, 2.

Recently, the third order Turán number for *M* has been established by Han and Kohayakawa. Let $G_3(n)$ be the 3-graph on *n* vertices, with distinguished vertices x, y_1, y_2, z_1, z_2 whose edge set consists of all edges spanned by x, y_1, y_2, z_1, z_2 except for $\{y_1, y_2, z_i\}$, i = 1, 2, and all edges of the form $\{x, z_i, v\}$, i = 1, 2, where $v \notin \{x, y_1, y_2, z_1, z_2\}$. Note that $|G_3(n)| = 8 + 2(n-5) = 2n-2$.

Theorem 4 ([7, Theorem 1.6]). For $n \ge 7$, $ex^{(3)}(n; M) = 2n - 2$ and $Ex^{(3)}(n; M) = \{G_3(n)\}$.

Interestingly, the number $\binom{n-1}{2}$ serves as the Turán number for two other 3-graphs, *C* and *P*. The Turán number ex⁽¹⁾(*n*; *C*) has been determined in [3] for $n \ge 75$ and later for all *n* in [1].

Theorem 5 ([1]). For $n \ge 6$, $ex^{(1)}(n; C) = \binom{n-1}{2}$. Moreover, for $n \ge 8$, $Ex^{(1)}(n; C) = \{S_n\}$.

For large *n*, the Turán numbers for longer (than three) loose 3-uniform paths were found in [12]. The case of length three has been omitted in [12], probably because the authors thought it had been taken care of in [5], where *k*-uniform loose paths were considered, $k \ge 4$. However, the method used in [5] did not quite work for 3-graphs. In [10] we fixed this omission. Given two 3-graphs F_1 and F_2 , by $F_1 \cup F_2$ denote a vertex-disjoint union of F_1 and F_2 . If $F_1 = F_2 = F$ we will sometimes write 2*F* instead of $F \cup F$.

Theorem 6 ([10]).

$$ex^{(1)}(n; P) = \begin{cases} \binom{n}{3} & and \quad Ex^{(1)}(n; P) = \{K_n\} & for \ n \leq 6, \\ 20 & and \quad Ex^{(1)}(n; P) = \{K_6 \cup K_1\} & for \ n = 7, \\ \binom{n-1}{2} & and \quad Ex^{(1)}(n; P) = \{S_n\} & for \ n \geq 8. \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/4646562

Download Persian Version:

https://daneshyari.com/article/4646562

Daneshyari.com