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a b s t r a c t

Apath v1, v2, . . . , vm in a graphG is degree-monotone if deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vm)
where deg(vi) is the degree of vi in G. Longest degree-monotone paths have been studied
in several recent papers. Here we consider the Ramsey type problem for degree monotone
paths. Denote by Mk(m) the minimum number M such that for all n ≥ M , in any k-edge
coloring of Kn there is some 1 ≤ j ≤ k such that the graph formed by the edges colored j has
a degree-monotone path of order m. We prove several nontrivial upper and lower bounds
for Mk(m).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A path v1, v2, . . . , vm in a graph G is degree-monotone if deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vm) where deg(vi) is the degree
of vi in G. The maximum order over all degree-monotone paths in G is denoted bymp(G). General monotone path problems
were systematically treated long ago by Chvatal and Komlós [9], who related oriented graphs and oriented paths to various
path monotonicity problems, motivated by the famous Erdős–Szekeres Theorem [11,13] on monotone sub-sequences, and
by the Gallai–Hasse–Roy–Vitaver Theorem (see [20]). Another famous monotone path problem is suggested by Graham and
Kleitman [15] in which the edges of Kn are bijectively labeled by [1, . . . ,

( n
2

)
] and the problem is to determine the minimum

over all possible labelings of a maximummonotone path.
The study of degree monotone paths and mp(G) was explicitly suggested and developed in connection with certain

domination problems by Deering et al. [10] and further developed by Caro et al. [5,6] who studied mp(G) and related
parameters in the context of extremal Turán type results.

One important observation which is immediate from the Gallai–Hasse–Roy–Vitaver Theorem is that mp(G) ≥ χ (G).
Indeed, if we orient an edge from a low degree vertex to a high degree vertex (breaking ties arbitrarily), then a directed path
in the resulting oriented graph corresponds to a degree-monotone path in the original undirected graph, and the Gallai–
Hasse–Roy–Vitaver Theorem asserts that in any orientation, the order of a longest directed path is at least as large as the
chromatic number. Hencemp(G) is a nontrivial upper bound for the chromatic number, which is sometimes tight.

In Ramsey theory, some interesting and active research is about R(P1, . . . , Pk), the Ramsey number for k-edge-colored
complete graphs that forces a monochromatic path Pj in the edges colored j , for some 1 ≤ j ≤ k (see for example [17,19]).
In this paper we study the corresponding Ramsey type problem for monotone paths where monotonicity is determined by
the most basic parameter, the degree of a vertex. A formal definition follows.

A k-edge coloring is a coloring of the edges of a graph where each edge is given one of k distinct colors. Denote by
M = M(m1,m2, . . . ,mk) the minimum number M such that for all n ≥ M , in any k-edge coloring of Kn, for some j where
1 ≤ j ≤ k, the spanning monochromatic graph Gj formed by the edges colored j satisfies mp(Gj) ≥ mj. In the diagonal case
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m = m1 = · · · = mk, we writeMk(m). We refer to a monochromatic degree-monotone path in this context as anmdm-path
for short. We will always assume that k ≥ 2 and m ≥ 3 and (in the non-diagonal case) mi ≥ 3 for all i = 1, . . . , k to avoid
the trivial cases.

As we shall see, an upper bound for M(m1, . . . ,mk) can be obtained via some classical techniques (summarized in
Lemma 2.1) developed around the multicolor version of the famous Nordhaus–Gaddum Theorem [14,18]. However, in
several cases this upper bound is not sharp, and getting better upper bounds seems as a highly non-trivial task requiring
new ideas, among them some characterization of certain bipartite graphs with a constrained degree sequence. Also, we
may not assume monotonicity in the sense explained in the following paragraph, hence to get a lower bound construction
we have to overcome this difficulty. The open problems mentioned in the end of the paper indicate the various interesting
directions opened by the Ramsey degree-monotone path problem.

One should observe a subtlety in the definitions ofMk(m) (as well asM(m1, . . . ,mk)). It is not clear that if n is the smallest
integer for which Kn satisfies the stated property, then Mk(m) = n. This is because being true for n, does not a priori imply
it for n + 1 as the parameter mp(G) is not hereditary. For example, mp(K2,3) = 2 whereas for its induced subgraph K2,2 we
havemp(K2,2) = 4. This issue occurs in the setting of edge colorings of Kn as well. Consider a 2-edge coloring of K5 with color
1 inducing a K2,3. Then there is no monotone path of order 4 in any of the colors, while the colored K4 subgraph obtained
by removing a vertex incident with two edges of color 1 has a monotone path of order 4 in color 1. Hence the requirement
in the definition that M is the smallest integer such that for all n ≥ M the stated property holds, is important. These sort
of Ramsey-degree problems (with the related subtle monotonicity problem just mentioned) originated in some papers by
Albertson [1,2] and Albertson and Berman [3], and were further developed shortly afterward by Chen and Schelp [7] and
Erdős et al. [12]. We mention the following interesting result that appeared in [12].

Theorem 1.1. In any 2-coloring of the edges of Kn, where n ≥ R(m,m), there is a monochromatic copy of Km with vertices
v1, . . . , vm such that in the host monochromatic graph G,

max{deg(vi) : i = 1, . . . ,m} − min{deg(vi) : i = 1, . . . ,m} ≤ R(m,m) − 2,

and this is sharp for n ≥ 4(r − 1)(r − 2) where r = R(m,m).

Having all these facts in mind we are now ready to state our first main result, which provides general upper and lower
bounds forMk(m).

Theorem 1.2. Let k ≥ 2 and m ≥ 3 be integers. Then:

(m − 1)k

2
+

m − 1
2

+ 1 ≤ Mk(m) ≤ (m − 1)k + 1.

In fact, more generally, if mi ≥ 3 for all i = 1, . . . , k, then M(m1, . . . ,mk) ≤
∏k

i=1(mi − 1) + 1.

Notice that the upper and lower bounds forMk(m) differ by a factor smaller than 2.
As usual in most Ramsey type problems, proving tighter bounds, or even computing exact small values, turns out to be a

difficult task already in the first, and perhaps most interesting, case of paths of order 3, namely Mk(3). This case can also be
interpreted as requiring that the degree of every vertex of a graph with no isolated edges is a local extremum (either strictly
smaller than the degree of all its neighbors or strictly larger than the degree of all its neighbors). Observe that Theorem 1.2
gives 2k−1

+ 2 ≤ Mk(3) ≤ 2k
+ 1. Our next theorem improves both upper and lower bounds.

Theorem 1.3.M2(3) = 4, M3(3) = 8 and 3
42

k
+ 2 ≤ Mk(3) ≤ 2k

− 1 for k ≥ 4.

We note that while the upper bound is only a mild improvement over the one provided by Theorem 1.2, its proof turns
out to be somewhat involved.

The first off-diagonal nontrivial case isM(3,m) for which we prove:

Theorem 1.4. For all m ≥ 3, M(3,m) = 2(m − 1).

In the rest of this paper we prove the general bounds in Section 2, the more involved tighter bounds for paths of order
3 are proved in Section 3, and the proof of Theorem 1.4 appears in Section 4. The final section contains some specific open
problems. Our notation follows that of [20], and will otherwise be introduced when it first appears.

2. General upper and lower bounds

In this section we prove Theorem 1.2. The upper bound in Theorem 1.2 is a consequence of the following result proved
independently by Gyárfás and Lehel [16], Bermond [4], and Chvatal [8]. They used an observation of Zykov [21] that states
that in any edge coloring of a complete graph with more than

∏k
i=1(mi − 1) vertices with k colors, there is a color i that

induces a graph whose chromatic number is at leastmi, together with the Gallai–Hasse–Roy–Vitaver Theorem to deduce:
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