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a b s t r a c t

The Turán number of a graphH , denoted by ex(n,H), is themaximum number of edges in a
simple graph of order nwhich does not containH as a subgraph. In this paper,we determine
the value ex(n, k · P3) and characterize all extremal graphs for all positive integers n and k,
where k · P3 is k disjoint copies of a path on three vertices. This extends a result of Bushaw
and Kettle (2011), which solved the conjecture proposed by Gorgol (2011).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Our notation in this paper is standard (see, e.g. [6]). Let G = (V (G), E(G)) be a simple graph, where V (G) is the vertex set
with n vertices and E(G) is the edge set with size e(G). The degree of v ∈ V (G), the number of edges incident to v, is denoted
by dG(v) and the set of neighbors of v is denoted by N(v). If u and v in V (G) are adjacent, we say that u hits v or v hits u. If
u and v are not adjacent, we say that u misses v or v misses u. For S ⊆ V (G), the induced subgraph of G by S is denoted by
G[S]. Let G and H be two disjoint graphs, denote by G

⋃
H the disjoint union of G and H and by k · G the disjoint union of

k copies of a graph G. Denote by G + H the graph obtained from G
⋃

H by adding edges between all vertices of G and all
vertices of H . Moreover, denote by Pl a path on l vertices and by Mt the disjoint union of ⌊

t
2⌋ disjoint copies of edges and

⌈
t
2⌉−⌊

t
2⌋ isolated vertex (maybe no isolated vertex). We often refer to a path by the nature sequence of its vertices, writing,

say, Pl = x1x2 . . . xl and calling Pl a path from x1 to xl.
The Turán number of a graph H , denoted by ex(n,H), is the maximum number of edges in a graph of order n which does

not contain H as a subgraph. Denote by Gex(n,H) a graph on n vertices with ex(n,H) edges containing no H as a subgraph
and call this graph an extremal graph forH . Often, there are several extremal graphs. In 1941, Turán proved that the extremal
graph without containing Kr as a subgraph is the Turán graph Tr−1(n). Later, Moon [19] (only when r − 1 divides n − k + 1)
and Simonovits [21] showed that Kk−1 + Tr−1(n − k + 1) is the unique extremal graph containing no k · Kr for sufficiently
large n.

In 1959, Erdős and Gallai [7] proved the following well known result.

Theorem 1.1 ([7]). If G is a simple graphwith n ≥ k vertices, then ex(n, Pk) ≤
1
2 (k−2)nwith equality if and only if n = (k−1)t.

Moreover the extremal graph is
⋃t

i=1Kk−1.
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Recently, Gorgol [13] studied the Turán number of disjoint copies of any connected graphs. Let H be any connected graph
on l vertices, with the aid of the two graphs Gex(n − kl + 1,H)

⋃
Kkl−1 and Gex(n − k + 1,H) + Kk−1, she presented a lower

bound for ex(n, k · H). In particular, she proved the following.

Theorem 1.2 ([13]).

ex(n, 2 · P3) =

⌊
n − 1
2

⌋
+ n − 1, for n ≥ 9;

ex(n, 3 · P3) =

⌊n
2

⌋
+ 2n − 4, for n ≥ 14.

Furthermore, based on Theorem 1.2 and the lower bound of k disjoint copies of connected graph, she proposed the following
conjecture.

Conjecture 1.3 ([13]).

ex(n, k · P3) =

⌊
n − k + 1

2

⌋
+ (k − 1)n −

k(k − 1)
2

for n sufficiently large.

Bushaw and Kettle [3] proved Conjecture 1.3 and characterized all extremal graphs. Their result is as follows.

Theorem 1.4 ([3]).

ex(n, k · P3) =

(
k − 1
2

)
+ (n − k + 1)(k − 1) +

⌊
n − k + 1

2

⌋
for n ≥ 7k.

Moreover, the only extremal graph is Kk−1 + Mn−k+1.

In fact, Gorgol in [13] also conjecture that the lower bound is sharp for k · P3. Based on the proof of Conjecture 1.3, Bushaw
and Kettle [3] conjectured that the extremal graph is unique for n > 5k − 1. Their conjecture can be stated as follows.

Conjecture 1.5 ([3,13]).

ex(n, k · P3) =

⎧⎪⎪⎨⎪⎪⎩
(
3k − 1

2

)
+

⌊
n − 3k + 1

2

⌋
, for 3k ≤ n ≤ 5k − 1;(

k − 1
2

)
+ (n − k + 1)(k − 1) +

⌊
n − k + 1

2

⌋
, for n ≥ 5k − 1.

In [3], Bushaw and Kettle also determined the Turán number of k disjoint copies of Pl with l ≥ 4 and also characterized
all extremal graphs for sufficiently large n. The related results on the Turán number of paths, forests may be referred to
[1,2,8,18] and the references therein. There are also many hypergraph Turán problems [11,10,17] of paths and cycles and
some results of the disjoint union of hypergraphs [4,14]. For Turán numbers of graphs and hypergraphs, there are several
excellent surveys [12,15,20] for more information.

There are very few cases when the Turán number ex(n, F ) is known exactly for all n. Erdős and Gallai [7] showed that

ex(n,M2k+2) = max
{(

2k + 1
2

)
,

(
k
2

)
+ k(n − k)

}
.

ex(n, Pk) was determined for all n and k by Faudree and Schelp [8] and independently by Kopylov [16]. Füredi and Gunderson
[9] determined ex(n, C2k+1) for all k and n and characterized all extremal graphs.

In this paper, we determine ex(n, k·P3) and characterize all extremal graphs for all k and n, which confirms Conjecture 1.5.
The main result in this paper is as follows.

Theorem 1.6.

ex(n, k · P3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n
2

)
, for n < 3k;(

3k − 1
2

)
+

⌊
n − 3k + 1

2

⌋
, for 3k ≤ n < 5k − 1;(

3k − 1
2

)
+ k, for n = 5k − 1;(

k − 1
2

)
+ (n − k + 1)(k − 1) +

⌊
n − k + 1

2

⌋
, for n > 5k − 1.
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