Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Vertex-coloring 3-edge-weighting of some graphs

Yezhou Wu^a, Cun-Quan Zhang^b, Bao-Xuan Zhu^{c,*}

^a Ocean College, Zhejiang University, Hangzhou, 310027, Zhejiang, China

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States

^c School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

ARTICLE INFO

Article history: Received 19 April 2016 Received in revised form 3 August 2016 Accepted 5 August 2016

Keywords: 1-2-3-conjecture Vertex-coloring 3-edge-weighting Spanning trees

ABSTRACT

Let *G* be a non-trivial graph and $k \in \mathbb{Z}^+$. A vertex-coloring *k*-edge-weighting is an assignment $f : E(G) \to \{1, \ldots, k\}$ such that the induced labeling $f : V(G) \to \mathbb{Z}^+$, where $f(v) = \sum_{e \in E(v)} f(e)$ is a proper vertex coloring of *G*. It is proved in this paper that every 4-edge-connected graph with chromatic number at most 4 admits a vertex-coloring 3-edge-weighting.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For technical reasons, all graphs considered in this paper are connected multigraphs with parallel edges but no loop. A graph with two vertices and m parallel edges is denoted by mK_2 .

Let *G* be a graph. A vertex-coloring *k*-edge-weighting of *G* is an assignment $f : E(G) \rightarrow \{1, ..., k\}$ such that the induced labeling $f : V(G) \rightarrow \mathbb{Z}^+$, where $f(v) = \sum_{e \in E(v)} f(e)$, is a proper vertex coloring of *G* (see [1,2,3,6,11], or a comprehensive survey paper [9]).

In [6], Karoński, Luczak and Thomason conjectured (*the* 1-2-3-*conjecture*) *that every graph other than* mK_2 *admits a vertex coloring* 3-*edge-weighting.* It is proved in [5] that every graph other than mK_2 admits a vertex-coloring 5-edge-weighting. It also proved in [6] that every 3-colorable graph other than mK_2 admits a vertex-coloring 3-edge-weighting; and in [7] that every 4-colorable graph other than mK_2 admits a vertex-coloring 4-edge-weighting. In this paper, we extend some of these results by verifying the 1-2-3-conjecture for some graphs *G* with $\chi(G) \leq 4$.

Theorem 1.1. Every 4-edge-connected 4-colorable multigraph G admits a vertex-coloring 3-edge-weighting.

1.1. Notation and terminology

We follow [4] and [12] for terms and notation.

A circuit is a connected 2-regular graph.

Let H_1 and H_2 be two subgraphs of a graph G. The symmetric difference of H_1 and H_2 , denoted by $H_1 \triangle H_2$, is the subgraph of G induced by the set of edges $[E(H_1) \cup E(H_2)] \setminus [E(H_1) \cap E(H_2)]$.

Let *G* be a graph. The set of odd vertices of *G* is denoted by O(G). Let *U* be a subset of V(G) with even order. A spanning subgraph *Q* is called *T*-join of *G* (with respected to *U*) if O(Q) = U.

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.08.011 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: yezhouwu@zju.edu.cn (Y. Wu), cqzhang@mail.wvu.edu (C.-Q. Zhang), bxzhu@jsnu.edu.cn (B.-X. Zhu).

2. Proof of the main theorem

2.1. Sketch of an outline of the proof

Let β : $V(G) \rightarrow Z_4$ be a 4-coloring of *G*. We are to find a vertex-coloring 3-edge-weighting *f* such that $f(v) \equiv \beta(v)$ (mod 4) for every vertex *v*.

A necessary condition of β is $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{2}$ since

$$\sum_{v \in V(G)} f(v) \equiv 2 \sum_{e \in E(G)} f(e) \equiv 0 \pmod{2}.$$

Let

$$W_{\mu} = \{ v \in V(G) : \beta(v) - d_G(v) \equiv \mu \pmod{4} \}.$$

The first step of the proof is to find a *T*-join *Q* with $O(Q) = W_1 \cup W_3$. Define $g : E(Q) \rightarrow \{2\}$, and $\beta' : V(G) \rightarrow Z_4$ such that

$$\beta'(x) \equiv \begin{cases} \beta(x) - 2 & \text{if } x \in W_1 \cup W_3 \\ \beta(x) & \text{otherwise} \end{cases} \pmod{4}.$$

It will be proved that, in the subgraph G - E(Q), $d_{G-E(Q)}(v) \equiv \beta'(v)$ or $\beta'(v) + 2 \pmod{4}$ for every $v \in V(G)$.

In the second step, Lemma 2.2 is applied to find another edge-weight $f_0 : E(G) - E(Q) \rightarrow \{1, 3\}$ such that, for every $v \in V(G)$,

$$\beta'(v) \equiv \sum_{e \in E(v) - E(Q)} f_0(e) \pmod{4}.$$

Thus, the combination of g and f_0 yields a vertex-coloring 3-edge-weighting of G.

By Tutte and Nash-Williams Theorem [8,10], a 4-edge-connected graph contains a pair of edge-disjoint spanning trees T_1 , T_2 . The subset Q is to be found in $G - T_2$, and the weight f_0 is assigned in E(G) - E(Q). We notice that a straightforward application of Tutte–Nash-Williams Theorem is not sufficient due to a parity requirement for |Q|. Thus, Tutte–Nash-Williams Theorem is extended in Lemma 2.1 in order to meet the requirements of Lemma 2.2 in the second step of the proof.

2.2. Lemmas

Lemma 2.1. If *G* is a 4-edge-connected non-bipartite graph, then E(G) has a partition $\{T_1, T_2, F\}$ such that each T_i is a spanning tree and $T_1 + F$ contains an odd-circuit.

Lemma 2.2. Let *H* be a graph and let $\beta_H : V(H) \rightarrow Z_4$ be a mapping. Assume that

(i) *H* is connected; (ii) $\beta_H(v) \equiv d_H(v) \pmod{2}$ for each vertex $v \in V(H)$; (iii) $\sum_{v \in V(H)} \beta_H(v) \equiv 2|E(H)| \pmod{4}$. Then there exists a mapping $f_H : E(H) \rightarrow \{1, 3\}$ such that for each vertex $x \in V(H)$,

$$f_H(x) = \sum_{e \in E(x)} f_H(e) \equiv \beta_H(x) \pmod{4}.$$
(1)

See Section 3 for proofs of both lemmas.

2.3. Proof of Theorem 1.1

We pay only attention to graphs with chromatic number $\chi = 4$ since it was proved in [6] that every multigraph *G* with $\chi(G) \leq 3$ admits a vertex-coloring 3-edge-weighting.

I. Since $\chi(G) = 4$, there exists a vertex partition { V_0 , V_1 , V_2 , V_3 } of V(G) such that each V_i is an independent set, i = 0, 1, 2 and 3. Renaming them if necessary, we can assume that $|V_1| + |V_3|$ is even. Define $\beta : V(G) \rightarrow \{0, 1, 2, 3\}$ such that $\beta(v) = i$ if $v \in V_i$. Then

$$\sum_{x \in V(G)} \beta(x) = |V_1| + 2|V_2| + 3|V_3| \equiv |V_1| + |V_3| \equiv 0 \pmod{2}.$$
(2)

Our goal is to find an edge-weighting $f : E(G) \rightarrow \{1, 2, 3\}$ such that

$$\sum_{e \in E(x)} f(e) \equiv \beta(x) \pmod{4}$$
(3)

for every vertex x.

Download English Version:

https://daneshyari.com/en/article/4646568

Download Persian Version:

https://daneshyari.com/article/4646568

Daneshyari.com