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1. Introduction

For technical reasons, all graphs considered in this paper are connected multigraphs with parallel edges but no loop. A
graph with two vertices and m parallel edges is denoted by mK-.

Let G be a graph. A vertex-coloring k-edge-weighting of G is an assignment f : E(G) — {1, ..., k} such that the induced
labeling f : V(G) — Z™, where f(v) = ZeeE(U)f(e), is a proper vertex coloring of G (see [1,2,3,6,11], or a comprehensive
survey paper [9]).

In [6], Karoniski, Luczak and Thomason conjectured (the 1-2-3-conjecture) that every graph other than mK, admits a vertex
coloring 3-edge-weighting. It is proved in [5] that every graph other than mK, admits a vertex-coloring 5-edge-weighting.
It also proved in [6] that every 3-colorable graph other than mK, admits a vertex-coloring 3-edge-weighting; and in [7]
that every 4-colorable graph other than mK, admits a vertex-coloring 4-edge-weighting. In this paper, we extend some of
these results by verifying the 1-2-3-conjecture for some graphs G with x(G) < 4.

Theorem 1.1. Every 4-edge-connected 4-colorable multigraph G admits a vertex-coloring 3-edge-weighting.

1.1. Notation and terminology

We follow [4] and [12] for terms and notation.

A circuit is a connected 2-regular graph.

Let H; and H; be two subgraphs of a graph G. The symmetric difference of H; and H,, denoted by H;AH,, is the
subgraph of G induced by the set of edges [E(H{) U E(H3)] \ [E(Hy) N E(H3)].

Let G be a graph. The set of odd vertices of G is denoted by O(G). Let U be a subset of V(G) with even order. A spanning
subgraph Q is called T-join of G (with respected to U) if 0(Q) = U.
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2. Proof of the main theorem
2.1. Sketch of an outline of the proof

Let B : V(G) — Z4 be a 4-coloring of G. We are to find a vertex-coloring 3-edge-weighting f such that f(v) = B(v)
(mod 4) for every vertex v.
A necessary condition of 8 is ZveV(G)lB(v) = 0 (mod 2) since

Zf —ZZf (mod 2).

veV(G ecE(G

Let
W, ={veV(G): Bv)—ds(v)=pn (mod 4)}.

The first step of the proof is to find a T-join Q with O(Q) = W; U W3. Define g : E(Q) — {2}, and B’ : V(G) — Z4 such
that

oy Bx)—=2 ifxe W UW
B = {ﬁ(x) otherwis]e 3} (mod 4).

It will be proved that, in the subgraph G — E(Q), dg_pq)(v) = B'(v) or B'(v) + 2 (mod 4) for every v € V(G).
In the second step, Lemma 2.2 is applied to find another edge-weight fy : E(G) — E(Q) — {1, 3} such that, for every
v € V(G),

Bw)= > fole) (mod 4).
ecE(v)—E(Q)
Thus, the combination of g and f, yields a vertex-coloring 3-edge-weighting of G.

By Tutte and Nash-Williams Theorem [8,10], a 4-edge-connected graph contains a pair of edge-disjoint spanning
trees Ty, To. The subset Q is to be found in G — T,, and the weight f; is assigned in E(G) — E(Q). We notice that a
straightforward application of Tutte-Nash-Williams Theorem is not sufficient due to a parity requirement for |Q|. Thus,
Tutte-Nash-Williams Theorem is extended in Lemma 2.1 in order to meet the requirements of Lemma 2.2 in the second
step of the proof.

2.2. Lemmas

Lemma 2.1. If G is a 4-edge-connected non-bipartite graph, then E(G) has a partition {Ty, To, F} such that each T; is a spanning
tree and T; + F contains an odd-circuit.

Lemma 2.2. Let H be a graph and let By : V(H) — Z4 be a mapping. Assume that
(i) H is connected;
(ii) By(v) = dy(v) (mod 2) for each vertex v € V(H);

(iii) >, ey nPr(v) = 2|E(H)| (mod 4).
Then there exists a mapping fy : E(H) — {1, 3} such that for each vertex x € V(H),

= D fule)=Bu(x) (mod 4). (1)

ecE(x)

See Section 3 for proofs of both lemmas.
2.3. Proof of Theorem 1.1

We pay only attention to graphs with chromatic number y = 4 since it was proved in [6] that every multigraph G with
x(G) < 3 admits a vertex-coloring 3-edge-weighting.

L. Since x(G) = 4, there exists a vertex partition {Vy, V1, V5, V3} of V(G) such that each V; is an independent set, i = 0, 1,
2 and 3. Renaming them if necessary, we can assume that |V| + |V3] is even. Define g8 : V(G) — {0, 1, 2, 3} such that
B(v)=iifv € V.. Then

Z B(x) = Vil + 2|Vo| + 3|V5] = [Va| + V3] =0 (mod 2). (2)
xeV(G)

Our goal is to find an edge-weighting f : E(G) — {1, 2, 3} such that
Z fle)=B(x) (mod 4) (3)
ecE(x

for every vertex x.
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