# Tolerance intersection graphs of degree bounded subtrees of a tree with constant tolerance 2 

Elad Cohen ${ }^{\text {a,* }}$, Martin Charles Golumbic ${ }^{\text {b,a }}$, Marina Lipshteyn ${ }^{\text {b }}$, Michal Stern ${ }^{\text {c,b }}$<br>${ }^{\text {a }}$ Department of Computer Science, University of Haifa, Mount Carmel, 31905, Israel<br>${ }^{\text {b }}$ Caesarea Rothschild Institute, University of Haifa, Mount Carmel, 31905, Israel<br>${ }^{\text {c }}$ The Academic College of Tel-Aviv - Yaffo, Rabeno Yeruham 2, 68182, Tel-Aviv, Israel

## ARTICLE INFO

## Article history:

Received 29 May 2011
Received in revised form 12 August 2016
Accepted 14 August 2016

## Keywords:

Chordal graph
Weakly chordal graph
Intersection graph of subtrees of a tree
Complete bipartite graph


#### Abstract

An (h,s,t)-representation of a graph $G$ consists of a collection of subtrees $\left\{S_{v}: v \in V(G)\right\}$ of a tree $T$, such that (i) the maximum degree of $T$ is at most $h$, (ii) every subtree has maximum degree at most $s$, and (iii) there is an edge between two vertices in the graph if and only if the corresponding subtrees in $T$ have at least $t$ vertices in common. Jamison and Mulder denote the family of graphs that admit such a representation as $[h, s, t]$.

Our main theorem shows that the class of weakly chordal graphs is incomparable with the class $\left[h, s, t\right.$ ]. We introduce new characterizations of the graph $K_{2, n}$ in terms of the families $[h, s, 2]$ and $[h, s, 3]$. We then present our second main result characterizing the graphs in $[4,3,2]$ as being the graphs in $[4,4,2]$ avoiding a particular family of substructures, and we give a recognition algorithm for the family [4, 3, 2].


© 2016 Elsevier B.V. All rights reserved.

## 1. Introduction and motivation

A graph is chordal if it contains no chordless cycle of length greater than 3 . The class of chordal graphs is widely investigated and plays a fundamental role in graph theory. One of the reasons is that chordal graphs can be modeled as intersection graphs of subtrees of a tree (c.f. [2,5] and [18]). One can construct in linear time such an intersection representation, called a "clique tree", such that each node of the host tree corresponds to a maximal clique in the chordal graph.

In many real world applications, the intersection representation of a graph is more important than the graph itself. In [15] and [16], the intersection representation of a graph on a tree is defined as follows. An $(h, s, t)$-representation $\langle\mathcal{S}, T\rangle$ of $G$ consists of a collection of subtrees $\mathcal{S}=\left\{S_{v}: v \in V(G)\right\}$ of a tree $T$, such that (i) the maximum degree of $T$ is at most $h$, (ii) every subtree has maximum degree at most $s$, and (iii) there is an edge between two vertices in $G$ if and only if the corresponding subtrees in $T$ have at least $t$ vertices in common. The class of graphs that have an $(h, s, t)$-representation is denoted by $[h, s, t]$. Throughout the paper we will use the following definition.

Definition 1.1. We say that $G$ is sharply contained in $[h, s, t]$ if $G \in[h, s, t], G \notin\left[h^{\prime}, \infty, t\right]$ and $G \notin\left[\infty, s^{\prime}, t\right]$, where $h^{\prime}<h$ and $s^{\prime}<s$, respectively.

Thus, the family of chordal graphs is the same as [ $\infty, \infty, 1$ ]. This result was strengthened in [17] and [16], respectively, showing that the family of chordal graphs is also equivalent to $[3,3,1]$ and $[3,3,2]$. The notation $\infty$ here means that no

[^0]

Fig. 1. The forbidden subgraphs from Theorem 1.2.
restriction is imposed. The family of interval graphs, by definition, is the family [2, 2, 1] and is equivalent to [2, 2, 2]. There are other papers that study $[h, s, t]$, for specific values of $h, s$ and $t$, although without using this notion. For example, the family of edge intersection graphs of paths in a tree [7] (EPT graphs) is the class [ $\infty, 2,2$ ], and the family of vertex intersection graphs of paths in a tree [6,13] (VPT graphs or path graphs) is $[\infty, 2,1]$.

A graph is weakly chordal if neither the graph nor its complement contains a chordless cycle of length greater than 4. The class of weakly chordal graphs is also well studied and has a number of known applications [1,4,12,14]. It was shown in [10] that [4, 2, 2] is equivalent to the intersection of the family of weakly chordal graphs and $[\infty, 2,2]$, and in $[8,12]$ the following theorem characterizing the graphs in $[4,4,2]$ was given.

Theorem 1.2 ([8,12]). A graph $G$ is a weakly chordal ( $K_{2,3}, \overline{4 P_{2}}, \overline{P_{2} \cup P_{4}}, \overline{P_{6}}, H_{1}, H_{2}, H_{3}$ )-free graph (see Fig. 1) if and only if the graph $G$ has $a(4,4,2)$-representation.

Our main motivation in this paper has been to determine if there is an [h,s,t] class of graphs that corresponds to the class of weakly chordal graphs. From our results on the complete bipartite graphs, which are a family of weakly chordal graphs, we are able to confirm that weakly chordal graphs cannot be characterized within the $[h, s, t]$ framework. Our second important goal has been to characterize the class $[4,3,2]$ which is the last open case for the families $[h, s, t]$ with $4 \geq h \geq s$ and $t \geq 2$.

In Section 2, we investigate the complete bipartite graph $K_{2, n}$, where one part of the bipartition has two vertices and the other part has $n$ vertices. In [15] and [16], a function $f(h, s, t)$ is given, such that for any $n>f(h, s, t)$, the graph $K_{2, n}$ has no ( $h, s, t$ )-representation. We strengthen their results and prove new theorems characterizing $n$ such that $K_{2, n}$ has an ( $h, s, 2$ )-representation and those such that $K_{2, n}$ has an ( $h, s, 3$ )-representation.

In Section 3, we characterize the family [4, 3, 2]. In particular, we introduce a new family of graphs called "4-flowers", we prove that a 4 -flower graph is sharply contained in $[4,4,2]$ and that $[4,3,2]$ is the family of 4 -flower-free graphs belonging to [4, 4, 2]. We also provide a polynomial-time recognition algorithm for the class [4, 3, 2] in Section 5 . The recognition algorithm is used to prove the characterization theorem. In Section 4, we show a hierarchy of families of graphs between chordal and weakly chordal within the $[h, s, t]$ framework. The hierarchy also includes all cases of $[\infty, s, 2]$.

## 2. The ( $h, s, t$ )-representations of $K_{2, n}$

Jamison and Mulder (c.f. [15] and [16]) investigated the intersection graph of subtrees of a tree by studying the representations of the complete bipartite graph $K_{2, n}$. They found an upper bound for the size of $n$ as a function of $s$ and $t$, but they observed that this bound is far from being optimal.

Let $R(s, t)$ denote the complete balanced rooted tree whose root has $s$ children, internal nodes have $s-1$ children and all leaves are at distance $t-1$ from the root. Let $\gamma(s, t)$ be the number of subtrees of $R(s, t)$ which have exactly $t$ nodes and which contain the root. Jamison and Mulder prove in [16] the following:

Theorem 2.1 ([16]). If $h$, $s$ and $t$ are positive integers with $h \geq s$, and $n$ is a positive integer with $n>\gamma(s, t)(t+1)$, then $K_{2, n} \notin[h, s, t]$.

In this section, we will improve the bound of Jamison and Mulder for $t=2$ and $t=3$. The case of $t=2$ will be used in Section 4 for particular separation examples in the hierarchy shown in Fig. 5. The case of $t=3$ continues the search of Jamison and Mulder for ( $h, s, t$ )-representations for the graph $K_{2, n}$.

We introduce the following notation for an (h,s,t)-representation of $K_{2, n}$. Let $\{a, b\}$ be the vertices of the 2 -side of $K_{2, n}$, and let $A$ and $B$ be the subtrees of the host tree $T$ that correspond to $a$ and $b$. Similarly, let $\left\{s_{i}\right\}$ be the vertices of the $n$-side of $K_{2, n}$, and $\mathcal{S}^{\prime}=\left\{S_{i}\right\}$ the subtrees on the host tree $T$ that correspond to $\left\{s_{i}\right\}$ respectively, for $1 \leq i \leq n$.

# https://daneshyari.com/en/article/4646574 

Download Persian Version:

## https://daneshyari.com/article/4646574

## Daneshyari.com


[^0]:    * Corresponding author. Fax: +972 48288181.

    E-mail addresses: eladdc@gmail.com (E. Cohen), golumbic@cs.haifa.ac.il (M.C. Golumbic), lipshteynmarina@gmail.com (M. Lipshteyn), stern@mta.ac.il (M. Stern).

