Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Spanning trails with variations of Chvátal-Erdős conditions

Zhi-Hong Chen^a, Hong-Jian Lai^b, Meng Zhang^{c,*}

^a Department of Computer Science & Software Engineering, Butler University, Indianapolis, IN 46208, USA

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^c Department of Mathematics, University of North Georgia - Oconee, Watkinsville, GA 30677, USA

ARTICLE INFO

Article history: Received 5 August 2015 Received in revised form 11 May 2016 Accepted 2 August 2016

Keywords: Spanning trail Supereulerian Collapsible Independence number Matching number

ABSTRACT

Let $\alpha(G)$, $\alpha'(G)$, $\kappa(G)$ and $\kappa'(G)$ denote the independence number, the matching number, connectivity and edge connectivity of a graph *G*, respectively. We determine the finite graph families \mathcal{F}_1 and \mathcal{F}_2 such that each of the following holds.

(i) If a connected graph *G* satisfies $\kappa'(G) \ge \alpha(G) - 1$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_1 .

(ii) If $\kappa'(G) \ge \max\{2, \alpha(G) - 3\}$, then *G* has a spanning trail. This result is best possible. (iii) If a connected graph *G* satisfies $\kappa'(G) \ge 3$ and $\alpha'(G) \le 7$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_2 .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graphs considered are finite and loopless. We follow [5] for undefined terms and notation. Let $N_G(u)$ be the set of vertices adjacent to u in G, and $D_i(G) = \{v \in V(G) : d(v) = i\}$. As in [5], for a graph G, let $\alpha(G)$, $\alpha'(G)$, $\kappa'(G)$, $\kappa'(G)$ denote independence number, matching number, connectivity and edge connectivity of G, respectively. An edge cut E of a graph G is **essential** if G - E contains two nontrivial components. We use O(G) to denote the set of all odd degree vertices of G. A cycle on n vertices is often called an n-cycle. For $A \subseteq V(G) \cup E(G)$, G[A] is the subgraph of G induced by A, and G - A is the subgraph of G obtained by deleting the elements in A. Let H be a graph. We say G is H-free if G does not contain H as a subgraph.

As in [5], a graph *G* is **eulerian** if *G* is a closed trail. Equivalently, *G* is eulerian if *G* is connected with $O(G) = \emptyset$. A graph is **supereulerian** if it has a spanning closed trail. Boesch et al. [3] first posed the problem of characterizing supereulerian graphs. Pulleyblank [19] proved that determining if a 3-edge-connected planar graph is supereulerian is NP-complete. Catlin [8] gave a survey on supereulerian graphs, which was supplemented and updated in [14,18].

Motivated by a well-known result of Chvátal and Erdős [15] that every graph G with $\kappa(G) \ge \alpha(G)$ is Hamiltonian, there have been researches on conditions analogous to this Chvátal–Erdős Theorem to assure the existence of spanning trials in a graph utilizing relationship among independence number, matching number and edge-connectivity. See [1,16,17] and [21], among others. Let P(10) denote the Petersen graph and let $K_{2,3}(1, 2, 2)$, $S_{1,2}$, $K'_{2,3}$ be the graphs depicted in Fig. 1. Let P^n be a path of order n. Define

 $\mathcal{F}_1 = \{K_2, P^3, P^4, K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}, P(10)\} \text{ and } \mathcal{F}_2 = \{P(10), P(14)\}.$

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.08.002 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: chen@butler.edu (Z.-H. Chen), hong-jian.lai@mail.wvu.edu (H.-J. Lai), meng.zhang@ung.edu (M. Zhang).

Fig. 1. P(14) and some graphs in \mathcal{F}_1 .

Theorem 1.1 (Han et al., Theorem 3 of [16]). Let G be a simple graph with $\kappa(G) \ge 2$. If $\kappa(G) \ge \alpha(G) - 1$, then exactly one of the following holds.

(i) *G* is supereulerian.

(ii) $G \in \{P(10), K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}, K'_{2,3}\}.$

(iii) *G* is a 2-connected graph obtained from $K_{2,3}$ (resp. $S_{1,2}$) by replacing a vertex whose neighbors have degree three in $K_{2,3}$ (resp. $S_{1,2}$) with a complete graph of order at least three.

Theorem 1.2 (*Tian and Xiong, Theorem 4 of* [21]). If *G* is a 2-connected graph with $\alpha(G) \leq \kappa(G) + 3$, then *G* has a spanning trail.

The supereulerian property for graphs *G* with $\alpha'(G) \le 2$ and $\kappa'(G) \ge 2$ has been completely determined in [1] and [17]. The purpose of this paper is to investigate the existence of spanning trails in graphs with given relationship between independence number and edge-connectivity, or matching number with edge-connectivity. In this paper, we determine the finite graph families \mathcal{F}_1 and \mathcal{F}_2 such that each of the following holds.

Theorem 1.3. If a graph G satisfies $\kappa'(G) \ge \alpha(G) - 1$, then G has a spanning closed trail if and only if G is not contractible to a member of \mathcal{F}_1 .

Theorem 1.4. If $\kappa'(G) \ge \max\{2, \alpha(G) - 3\}$, then *G* has a spanning trail.

Theorem 1.5. If a graph *G* satisfies $\kappa'(G) \ge 3$ and $\alpha'(G) \le 7$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_2 .

In Section 2, we display the mechanism we will use in our arguments. In the subsequent sections, we prove the main results.

2. Preliminaries

For a subset $Y \subseteq E(G)$, the **contraction** G/Y is the graph obtained from G by identifying the two ends of each edge in Y and then by deleting the resulting loops. If H is a subgraph of G, we often use G/H for G/E(H). A graph G is called **collapsible** if for any $R \subseteq V(G)$ with |R| is even, G has a spanning subgraph S_R with $O(S_R) = R$. By definition, collapsible graphs are supereulerian. In [7], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs H_1, H_2, \ldots, H_c . The **reduction** of G, denoted by G', is the graph $G/(H_1 \cup H_2 \cup \cdots \cup H_c)$. A graph G is reduced if G' = G.

Theorem 2.1 (*Catlin, Theorem 2 of* [7]). Every graph *G* with $\kappa'(G) \ge 4$ is collapsible.

Theorem 2.2 (*Catlin, Theorem 3 of* [7]). Let G be a connected graph, H be a collapsible subgraph of G and let G' be the reduction of G. Then

(i) *G* is collapsible if and only if G/H is collapsible.

(ii) *G* is supereulerian if and only if G/H is supereulerian.

(iii) *G* has a spanning trail if and only if *G*/*H* has a spanning trail.

(iv) Any subgraph of a reduced graph is reduced.

Let F(G) be the minimum number of extra edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following results on the structures of reduced graphs will be needed.

Theorem 2.3. Let G be a connected reduced graph. Then

- (i) (*Catlin, Theorem 7 of* [6]) If $|V(G)| \ge 3$, then F(G) = 2(|V(G)| 1) |E(G)|.
- (ii) (Catlin, Theorem 8 of [7]) G is simple and K₃-free.
- (iii) (Catlin, Theorem 8 of [7]) $\delta(G) \leq 3$.

(iv) (Catlin et al., Theorem 1.3 of [9]) Either $G \in \{K_1, K_2\} \cup \{K_{2,t} : t \ge 1\}$ or $F(G) \ge 3$ and $|E(G)| \le 2|V(G)| - 5$.

Download English Version:

https://daneshyari.com/en/article/4646577

Download Persian Version:

https://daneshyari.com/article/4646577

Daneshyari.com