On the number of 7-cycles in regular n-tournaments

S.V. Savchenko
L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygin str. 2, Moscow 119334, Russia

A R T I CLE INFO

Article history:

Received 25 November 2014
Received in revised form 5 June 2016
Accepted 24 June 2016

Dedicated to Professor Domingos Moreira Cardoso for whom applying spectral graph theory to combinatorics is also his life-work

Keywords:

Tournament
Transitive tournament
Locally transitive tournament
Regular tournament
Doubly-regular tournament
Quadratic residue tournament

Abstract

For a regular tournament T of odd order n, let $c_{m}(T)$ be the number of cycles of length m in T. It is well known according to U . Colombo (1964) that $c_{4}(T) \leq c_{4}\left(R L T_{n}\right)$, where $R L T_{n}$ is the unique regular locally transitive tournament of order n. In turn, in 1968, A. Kotzig proved that $c_{4}\left(D R_{n}\right) \leq c_{4}(T)$, where $D R_{n}$ is a doubly-regular tournament of order n. However, the spectral tools allow us to simply show that the converse inequality $c_{5}\left(R L T_{n}\right) \leq$ $c_{5}(T) \leq c_{5}\left(D R_{n}\right)$ holds. Recently we have proved that $c_{6}(T) \leq c_{6}\left(D R_{n}\right)$ and conjectured that $c_{6}\left(R L T_{n}\right) \leq c_{6}(T)$. For these values of m, the same results can be also formulated for the trace $\operatorname{tr}_{m}(T)$ of the m th power of the adjacency matrix of T. (We consider this quantity here because it equals the number of closed walks of length m in T.) In the present paper, we determine $c_{7}\left(D R_{n}\right)$ and $c_{7}\left(R L T_{n}\right)$. Comparing $c_{7}\left(D R_{n}\right)$ with $c_{7}\left(R L T_{n}\right)$ yields the inequality $c_{7}\left(R L T_{n}\right)<c_{7}\left(D R_{n}\right)$, while $\operatorname{tr}_{7}\left(D R_{n}\right)<\operatorname{tr}_{7}\left(R L T_{n}\right)$ for $n \geq 7$. We also present some additional arguments which make it possible to suggest that for each odd $n \geq 9$, the two-sided bounds $c_{7}\left(R L T_{n}\right) \leq c_{7}(T) \leq c_{7}\left(D R_{n}\right)$ and $t_{7}\left(D R_{n}\right) \leq t_{7}(T) \leq t_{7}\left(R L T_{n}\right)$ hold.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A tournament T of order n is an orientation of the complete graph K_{n}. If a pair (i, j) is an arc in T, we say that the vertex i dominates the vertex j and write $i \rightarrow j$. For two vertex-sets I and J, we also write $I \Rightarrow J$ if every vertex of I dominates every vertex in J. The in-set $N^{-}(i)$ is the set of vertices dominating i in T. In turn, the out-set $N^{+}(i)$ is the set of vertices dominated by i in T. Obviously, $N^{-}(i) \Rightarrow i \Rightarrow N^{+}(i)$. Let $\delta_{i}^{+}=\left|N^{+}(i)\right|$ and $\delta_{i}^{-}=\left|N^{-}(i)\right|$. The quantities δ_{i}^{+}and δ_{i}^{-}are called the out-degree and in-degree of the vertex i, respectively. More generally, δ_{i}^{+}and δ_{i}^{-}are the semi-degrees of the vertex i.

A tournament is transitive if $i \rightarrow k$ and $k \rightarrow j$ implies that $i \rightarrow j$. By L. Redei's theorem, any tournament of order n admits at least one hamiltonian path, say, $1, \ldots, n$. For the transitive case, we have $i \rightarrow j$ if $j \geq i+1$. Obviously, this rule uniquely determines a tournament which we denote by $T T_{n}(1, \ldots, n)$. So, for given n, there exists exactly one transitive tournament $T T_{n}$ of order n. Obviously, it is also acyclic, i.e. it admits no cycles, at all.

A tournament is strongly connected (or, simply, strong) if for any two distinct vertices i and j, there is a path from i to j. Let $s_{m}(T)$ be the number of strong subtournaments of order m in T. Since the subtournament induced by the union of i and a subset of $N^{+}(i)$ cannot be strongly connected, for $m \geq 3$, the following inequality (obtained first in [3])

$$
\begin{equation*}
s_{m}(T) \leq\binom{ n}{m}-\sum_{i=1}^{n}\binom{\delta_{i}^{+}}{m-1} \tag{1}
\end{equation*}
$$

holds with equality if every subtournament of order m in T is either strong or transitive. In particular, this condition is satisfied if T is locally transitive, i.e. the out-set and in-set of each vertex of T induce transitive tournaments.

[^0]Note that $\sum_{i=1}^{n} \delta_{i}^{+}=n(n-1) / 2$. A well-known combinatorial result states that for a given sum $\sum_{i=1}^{n} \delta_{i}^{+}$, the binomial sum $\sum_{i=1}^{n}\binom{\delta_{i}^{+}}{m-1}$ is minimum and hence, the right-hand side of inequality (1) is a maximum when the out-degrees δ_{i}^{+}are as nearly equal as possible (see [3]). That is, if n is odd, each δ_{i}^{+}equals $\frac{n-1}{2}$ and hence, T is regular; if n is even, half the out-degrees are $\frac{n}{2}$ and the others are $\frac{n}{2}-1$, i.e. T is near regular. For both cases, the in-degrees take the same values as the out-degrees. So, if n is odd, we can say that a regular tournament of order n has semi-degree δ equal to $\frac{n-1}{2}$.

Denote by \mathcal{T}_{n} the class of all tournaments of order n. For arbitrary $m \geq 3$, the arguments presented above imply that the maximum of $s_{m}(T)$ in the class τ_{n}, where n is odd, is attained at a regular locally transitive tournament of order n (see [3]). In Section 3, we show (after V. Dugat) that the regularity and local transitivity conditions uniquely determine T for each odd n. Such a tournament was first introduced in [10] and is also often called the highly-regular tournament, the regular domination orientable tournament, and even the cyclonic tournament (or, simply, cyclone). In this paper, we denote it by $R L T_{n}$.

Note that the tournament $R L T_{n}$ is rotational, i.e. it can be represented as a tournament $R_{n}(S)$ on the ring $\mathbb{Z}_{n}=\{0, \ldots$, $n-1\}$ of residues modulo n for which a pair (i, j) is an arc if and only if $j-i \in S$, where S is a subset of $\{1, \ldots, n-1\}$ and the subtraction is taken modulo n. For $R_{n}(S)$ to be a tournament, the subset S must satisfy the conditions $S \cap-S=\emptyset$ and $S \cup-S=\{1, \ldots, n-1\}$. In particular, for the considered case, we have $S=\left\{1, \ldots, \frac{n-1}{2}\right\}$.

The tournament $R L T_{n}$ need not be a unique maximizer of $s_{m}(T)$ in the class \mathcal{T}_{n}. In particular, the maximum of $s_{3}(T)$ in the class \mathcal{T}_{n} is attained at a regular or near regular tournament according as n is odd or even (see [10]). It is so because a tournament of order 3 is either the cyclic triple Δ or $T T_{3}$ and hence, for $m=3$, the equality always holds in (1).

If $m=4$, the equality need not hold in (1) for an arbitrary tournament T of order n. Nevertheless, a formula for $s_{4}(T)$ can be obtained because all tournaments of order 4 can be also easily described. They are $T T_{4}, \circ \Rightarrow \Delta$, $\circ \Leftarrow \Delta$, and $R L T_{5}-v$. The structure of these tournaments allows one to show (see [3,13]) that

$$
s_{4}(T)=\binom{n}{4}-\sum_{i=1}^{n}\left\{\binom{\delta_{i}^{+}}{3}+\binom{\delta_{i}^{-}}{3}\right\}+\sum_{(i, j)}\binom{\delta_{i j}^{+}}{2}
$$

where $\delta_{i j}^{+}$is the number of vertices dominated by the pair of vertices i and j (we assume that $\delta_{i i}^{+}=\delta_{i}^{+}$) and the second sum is taken over the arc-set of T. It is clear that if $i \rightarrow j$, then $\delta_{i j}^{+}$is the out-degree of j in the subtournament induced by the out-set of the vertex i. Hence, for a regular tournament with semi-degree δ, we have

$$
\sum_{(i, j)} \delta_{i j}^{+}=\sum_{i=1}^{n} \sum_{j \leftarrow i} \delta_{i j}^{+}=(2 \delta+1) \delta(\delta-1) / 2
$$

This implies that the binomial sum $\sum_{(i, j)}\binom{\delta_{i j}^{+}}{2}$ takes the minimum value in the class $\mathcal{R}_{2 \delta+1}$ of all regular tournaments with semi-degree δ (and hence, order $2 \delta+1$) when the numbers $\delta_{i j}^{+}$are as nearly equal as possible. Thus, the minimum of the above expression for $s_{4}(T)$ in the class $\mathcal{R}_{2 \delta+1}$ is attained iff the out-set (and, hence, by duality, also in-set) of each vertex of T induces a regular or near regular tournament of order δ according as δ is odd or even (see [1,13]).

If this condition holds, then the corresponding tournament is doubly-regular or nearly-doubly-regular and is denoted by $D R_{n}$ or $N D R_{n}$ according as $n \equiv 3 \bmod 4$ or $n \equiv 1 \bmod 4$. In Section 5 , we present a well-known infinite series of doublyregular tournaments. However, the problem of the existence of $D R_{n}$ for each $n \equiv 3 \bmod 4$ is open up to now, while according to a common opinion, it exists for any possible order. The same can be also said about $N D R_{n}$, where, recall, $n \equiv 1 \bmod 4$.

Let $c_{m}(T)$ be the number of cycles of length m (or, merely, m-cycles) in T. Since for $m=3,4$, there exists exactly one strongly connected tournament of order m and it contains precisely one Hamiltonian cycle, we have $c_{m}(T)=s_{m}(T)$ and hence, we can apply the above-mentioned classical results on $s_{m}(T)$ to $c_{m}(T)$. For $m=5$, there exist exactly 12 tournaments of order 5 and the number of Hamiltonian cycles in them varies between 0 and 3. By this reason, it is difficult to get a clear combinatorial formula for $c_{5}(T)$, while the authors of [11] have been able to express $c_{5}(T)$ as the sum of the values of some polynomial function of four variables $n, \delta_{i}^{+}, \delta_{j}^{+}$, and $\delta_{i j}^{+}$taken over all arcs (i, j) of T. (As we have seen above, such an expression for $c_{m}(T)$ also exists if $m=3$ or $m=4$, but it is not so in the case of $m=6$ because two nearly-doubly-regular tournaments of the same order need not have equal numbers of 6-cycles.)

As J.W. Moon pointed out on page 298 [14], the problem of determining the maximum of $c_{m}(T)$ in the class \mathcal{T}_{n} seems to be very difficult in general. It is open up to now for each $m \geq 5$. However, the problem can be easily settled in the class \mathcal{R}_{n} if $m=5$. Indeed, the spectral methods allowed us to show in [19] (see formula (20) therein) that for a regular tournament T of order n, we have

$$
\begin{equation*}
c_{5}(T)+2 c_{4}(T)=\frac{n(n-1)(n+1)(n-3)(n+3)}{160} \tag{2}
\end{equation*}
$$

This identity and the results obtained for the case $m=4$ directly imply the two-sided bounds

$$
c_{5}\left(R L T_{n}\right) \leq c_{5}(T) \leq c_{5}\left(D R_{n}\right) \quad \text { if } n \equiv 3 \bmod 4
$$

and

$$
c_{5}\left(R L T_{n}\right) \leq c_{5}(T) \leq c_{5}\left(N D R_{n}\right) \quad \text { if } n \equiv 1 \bmod 4
$$

https://daneshyari.com/en/article/4646579

Download Persian Version:

https://daneshyari.com/article/4646579

Daneshyari.com

[^0]: E-mail address: savch@itp.ac.ru
 http://dx.doi.org/10.1016/j.disc.2016.06.021
 0012-365X/© 2016 Elsevier B.V. All rights reserved.

