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a b s t r a c t

For a regular tournament T of odd order n, let cm(T ) be the number of cycles of length
m in T . It is well known according to U. Colombo (1964) that c4(T ) ≤ c4(RLTn), where
RLTn is the unique regular locally transitive tournament of order n. In turn, in 1968, A.
Kotzig proved that c4(DRn) ≤ c4(T ), where DRn is a doubly-regular tournament of order n.
However, the spectral tools allowus to simply show that the converse inequality c5(RLTn) ≤
c5(T ) ≤ c5(DRn)holds. Recentlywehave proved that c6(T ) ≤ c6(DRn) and conjectured that
c6(RLTn) ≤ c6(T ). For these values of m, the same results can be also formulated for the
trace trm(T ) of the mth power of the adjacency matrix of T . (We consider this quantity
here because it equals the number of closed walks of length m in T .) In the present paper,
we determine c7(DRn) and c7(RLTn). Comparing c7(DRn)with c7(RLTn) yields the inequality
c7(RLTn) < c7(DRn), while tr7(DRn) < tr7(RLTn) for n ≥ 7.We also present some additional
argumentswhichmake it possible to suggest that for each oddn ≥ 9, the two-sidedbounds
c7(RLTn) ≤ c7(T ) ≤ c7(DRn) and tr7(DRn) ≤ tr7(T ) ≤ tr7(RLTn) hold.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A tournament T of order n is an orientation of the complete graph Kn. If a pair (i, j) is an arc in T , we say that the vertex i
dominates the vertex j and write i→ j. For two vertex-sets I and J , we also write I ⇒ J if every vertex of I dominates every
vertex in J . The in-set N−(i) is the set of vertices dominating i in T . In turn, the out-set N+(i) is the set of vertices dominated
by i in T . Obviously, N−(i) ⇒ i ⇒ N+(i). Let δ+i = |N

+(i)| and δ−i = |N
−(i)|. The quantities δ+i and δ−i are called the

out-degree and in-degree of the vertex i, respectively. More generally, δ+i and δ−i are the semi-degrees of the vertex i.
A tournament is transitive if i→ k and k→ j implies that i→ j. By L. Redei’s theorem, any tournament of order n admits

at least one hamiltonian path, say, 1, . . . , n. For the transitive case, we have i→ j if j ≥ i+ 1. Obviously, this rule uniquely
determines a tournament which we denote by TTn(1, . . . , n). So, for given n, there exists exactly one transitive tournament
TTn of order n. Obviously, it is also acyclic, i.e. it admits no cycles, at all.

A tournament is strongly connected (or, simply, strong) if for any two distinct vertices i and j, there is a path from i to j.
Let sm(T ) be the number of strong subtournaments of order m in T . Since the subtournament induced by the union of i and
a subset of N+(i) cannot be strongly connected, form ≥ 3, the following inequality (obtained first in [3])

sm(T ) ≤


n
m


−

n
i=1


δ+i

m− 1


(1)

holds with equality if every subtournament of order m in T is either strong or transitive. In particular, this condition is
satisfied if T is locally transitive, i.e. the out-set and in-set of each vertex of T induce transitive tournaments.
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Note that
n

i=1 δ+i = n(n− 1)/2. A well-known combinatorial result states that for a given sum
n

i=1 δ+i , the binomial

sum
n

i=1


δ+i
m−1


is minimum and hence, the right-hand side of inequality (1) is a maximum when the out-degrees δ+i are

as nearly equal as possible (see [3]). That is, if n is odd, each δ+i equals n−1
2 and hence, T is regular; if n is even, half the

out-degrees are n
2 and the others are n

2 − 1, i.e. T is near regular. For both cases, the in-degrees take the same values as the
out-degrees. So, if n is odd, we can say that a regular tournament of order n has semi-degree δ equal to n−1

2 .
Denote by Tn the class of all tournaments of order n. For arbitrarym ≥ 3, the arguments presented above imply that the

maximum of sm(T ) in the class Tn, where n is odd, is attained at a regular locally transitive tournament of order n (see [3]). In
Section 3, we show (after V. Dugat) that the regularity and local transitivity conditions uniquely determine T for each odd n.
Such a tournamentwas first introduced in [10] and is also often called the highly-regular tournament, the regular domination
orientable tournament, and even the cyclonic tournament (or, simply, cyclone). In this paper, we denote it by RLTn.

Note that the tournament RLTn is rotational, i.e. it can be represented as a tournament Rn(S) on the ring Zn = {0, . . . ,
n− 1} of residues modulo n for which a pair (i, j) is an arc if and only if j− i ∈ S, where S is a subset of {1, . . . , n− 1} and
the subtraction is taken modulo n. For Rn(S) to be a tournament, the subset S must satisfy the conditions S ∩ −S = ∅ and
S ∪ −S = {1, . . . , n− 1}. In particular, for the considered case, we have S = {1, . . . , n−1

2 }.
The tournament RLTn need not be a unique maximizer of sm(T ) in the class Tn. In particular, the maximum of s3(T ) in

the class Tn is attained at a regular or near regular tournament according as n is odd or even (see [10]). It is so because a
tournament of order 3 is either the cyclic triple ∆ or TT3 and hence, form = 3, the equality always holds in (1).

Ifm = 4, the equality need not hold in (1) for an arbitrary tournament T of order n. Nevertheless, a formula for s4(T ) can
be obtained because all tournaments of order 4 can be also easily described. They are TT4, ◦ ⇒ ∆, ◦ ⇐ ∆, and RLT5 − v.
The structure of these tournaments allows one to show (see [3,13]) that

s4(T ) =


n
4


−

n
i=1


δ+i

3


+


δ−i

3
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+


(i,j)


δ+ij

2


,

where δ+ij is the number of vertices dominated by the pair of vertices i and j (we assume that δ+ii = δ+i ) and the second sum
is taken over the arc-set of T . It is clear that if i → j, then δ+ij is the out-degree of j in the subtournament induced by the
out-set of the vertex i. Hence, for a regular tournament with semi-degree δ, we have

(i,j)

δ+ij =

n
i=1


j←i

δ+ij = (2δ + 1)δ(δ − 1)/2.

This implies that the binomial sum


(i,j)

δ+ij
2


takes the minimum value in the class R2δ+1 of all regular tournaments with

semi-degree δ (and hence, order 2δ + 1) when the numbers δ+ij are as nearly equal as possible. Thus, the minimum of the
above expression for s4(T ) in the class R2δ+1 is attained iff the out-set (and, hence, by duality, also in-set) of each vertex of
T induces a regular or near regular tournament of order δ according as δ is odd or even (see [1,13]).

If this condition holds, then the corresponding tournament is doubly-regular or nearly-doubly-regular and is denoted by
DRn or NDRn according as n ≡ 3 mod 4 or n ≡ 1 mod 4. In Section 5, we present a well-known infinite series of doubly-
regular tournaments. However, the problemof the existence ofDRn for each n ≡ 3 mod 4 is open up to now,while according
to a common opinion, it exists for any possible order. The same can be also said about NDRn, where, recall, n ≡ 1 mod 4.

Let cm(T ) be the number of cycles of length m (or, merely, m-cycles) in T . Since for m = 3, 4, there exists exactly one
strongly connected tournament of order m and it contains precisely one Hamiltonian cycle, we have cm(T ) = sm(T ) and
hence, we can apply the above-mentioned classical results on sm(T ) to cm(T ). Form = 5, there exist exactly 12 tournaments
of order 5 and the number of Hamiltonian cycles in them varies between 0 and 3. By this reason, it is difficult to get a clear
combinatorial formula for c5(T ), while the authors of [11] have been able to express c5(T ) as the sum of the values of some
polynomial function of four variables n, δ+i , δ+j , and δ+ij taken over all arcs (i, j) of T . (As we have seen above, such an
expression for cm(T ) also exists if m = 3 or m = 4, but it is not so in the case of m = 6 because two nearly-doubly-regular
tournaments of the same order need not have equal numbers of 6-cycles.)

As J.W. Moon pointed out on page 298 [14], the problem of determining the maximum of cm(T ) in the class Tn seems to
be very difficult in general. It is open up to now for each m ≥ 5. However, the problem can be easily settled in the class Rn
if m = 5. Indeed, the spectral methods allowed us to show in [19] (see formula (20) therein) that for a regular tournament
T of order n, we have

c5(T )+ 2c4(T ) =
n(n− 1)(n+ 1)(n− 3)(n+ 3)

160
. (2)

This identity and the results obtained for the casem = 4 directly imply the two-sided bounds

c5(RLTn) ≤ c5(T ) ≤ c5(DRn) if n ≡ 3 mod 4

and

c5(RLTn) ≤ c5(T ) ≤ c5(NDRn) if n ≡ 1 mod 4.
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