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a b s t r a c t

The 3-path vertex cover problem is an extension of the well-known vertex cover problem.
It asks for a vertex set S ⊆ V (G) of minimum cardinality such that G − S only contains
independent vertices and edges. In this paper we will present a polynomial algorithm
which computes two disjoint sets T1, T2 of vertices of G such that (i) for any 3-path vertex
cover S ′ in G[T2], S ′

∪ T1 is a 3-path vertex cover in G, (ii) there exists a minimum 3-path
vertex cover in G which contains T1 and (iii) |T2| ≤ 6 · ψ3(G[T2]), where ψ3(G) is the
cardinality of a minimum 3-path vertex cover and T2 is the kernel of G.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last years the k-path vertex cover problem (k-PVCP for short) has becomemore andmore interesting in graph
theory since it is applicable to many practical problems. While there exist only a few results on k-PVCP, the number of open
questions arises expeditiously. Motivated by the problem of ensuring data integrity of communication in wireless sensor
networks using the k-generalized Canvas scheme in [6], Brešar et al. introduce the k-PVCP in [2].

A vertex subset S ⊆ V (G) is a k-path vertex cover of G if G− S contains no (not necessarily induced) path of length k− 1
in G. It is minimum if there exists no k-path vertex cover of smaller cardinality. We denote by ψk(G) the cardinality of a
minimum k-path vertex cover.

For k = 2, the k-PVCP is the well-known vertex cover problem (VCP for short), which is known to be NP-hard. Moreover,
in [2] it is shown that the computation of ψk(G) is NP-hard for k ≥ 3.

Although the k-PVCP is NP-hard, there exist some approximation algorithms for k ≤ 3. For example, using Nemhauser’s
and Trotter’s result in [5], we have a factor-2 algorithm for k = 2. For larger k, it is widely unknown whether one can
approximate the k-PVCP within a factor smaller than k. An exceptional case is k = 3, where two factor-2 algorithms are
given by Tu and Zhou in [9] and [10].

For k = 3, one can find an approximation algorithm and some bounds forψ3(G) in cubic graphs in [8], whereas [4] gives
an exact algorithm to solve the 3-PVCP in time O∗(1.5171n) for general graphs.

By Nemhauser’s and Trotter’s paper in 1975 [5], the question of finding the ‘‘hard part’’ of an NP-hard problem in a graph
G arises. In that sense ‘‘hard part’’ means kernel, i.e. the remaining set of vertices after applying some polynomial reduction
techniques. In [5], the authors deal with the VCP, i.e. 2-PVCP, and its kernel. Given d, the generalization of the VCP of Fellows
et al. in [3] considers the problem of finding a vertex set of minimum cardinality whose removal from G yields a graph
possessing vertices of degree at most d. Their result provides a polynomial algorithm computing a vertex set T such that
the cardinality of an optimal solution is at most |T |/(d3 + 4d2 + 6d + 4). It gives us a first kernelization algorithm for the
3-PVCP.
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On the one hand, we have two factor-2 approximation algorithms [9,10], which do not use kernelization techniques. On
the other hand, we can compute a kernel T ⊆ V (G) polynomially, such that |T | ≤ 15 ·ψ3(G[T ]) (by [3] for d = 1). Since the
range between 2 and 15 is really large, the aim of this paper is to provide a polynomial algorithm which computes a better
kernel T for an arbitrary graph G, i.e. |T | ≤ 6 · ψ3(G[T ]).

We consider finite, simple and undirected graphs and use [1] for terminology and notation which are not defined here.
A vertex subset S ⊆ V (G) is independent (dissociative) if G[S] contains no P2 (no P3). A set of vertex disjoint P3’s is a

P3-packing. It is maximal if there exists no P3 in G containing no vertex of a P3 in the P3-packing. For some maximal
P3-packing P , the graph G[V (G) \ V (P )] is the disjoint union of isolated vertices and isolated edges, i.e. V (G) \ V (P ) is
a dissociative set in G. Let us denote by P2(P ) its set of isolated P2’s and by P1(P ) its set of isolated vertices. Furthermore,
let us define Q (P ) as set of those vertices in V (P )which have a neighbour in V (P1(P ))∪V (P2(P )). If P is a path inP , then
let us denote by Q (P) the set of vertices in P which are in Q (P ). To simplify notation, let us say vertices in V (P ) are black
and vertices in V (P1(P ))∪ V (P2(P )) arewhite for some givenP . Moreover, all vertices inQ (P ) are called contact vertices.
We define the white neighbourhood Nw(u) of a black vertex u as the subset of white vertices which are either adjacent to
u or have one white common neighbour with u. Additionally, let us define Nw1 (u) and Nw2 (u) as Nw(u) ∩ V (P1(P )) and
Nw(u) ∩ V (P2(P )), respectively. Again to simplify notation, let us denote for some dissociative set D by Q ′(D) the set of
all vertices u ∈ N(D) for which every neighbour in D is not isolated in G[D]. To generalize our concepts, let us define by f (T )
the set


u∈T f (u) \ T for some function f : V (G) → 2V (G) and some set T ⊆ V (G).

2. Results

Ourmain objective is to provide a polynomial algorithm computing a kernel of the 3-path vertex cover problem in G. We
need two important tools for it. First, we introduce the concept of a 3-path crown decomposition.

Definition. A 3-path crown decomposition (H, C, R) is a partition of the vertices of the graph G such that

(i) H (the header) separates C and R, i.e. there exist no edges between C and R,
(ii) C (the crown) is a dissociative set in G,
(iii) there exists a function F : H →


C∪H
3


such that {G[F(u)] : u ∈ H} is a P3-packing in G[H ∪ C] of cardinality |H| whose

every path contains exactly one vertex of H .

Special cases of the 3-path crown decomposition are introduced by Prieto and Sloper in [7] and are known as fat crown
decomposition and double crown decomposition. The first one requires the additional property that only end-vertices of the
P3’s in the P3-packing are elements of H while the second one considers C as an independent set in G.

The usefulness of the 3-path crown decomposition is presented in the next lemma.

Lemma 2.1. A graph G that admits a 3-path crown decomposition (H, C, R) has a 3-path vertex cover of size at most c if and
only if G[R] has a 3-path vertex cover of size at most c − |H|.

Proof. Since C is a dissociative set in G, S ′
∪ H is a 3-path vertex cover of size |S ′

| + |H| in G if S ′
⊆ R is a 3-path vertex

cover in G[R].
Let S be a 3-path vertex cover in G. Assume H ∩ (V (G) \ S) ≠ ∅. Due to the definition of a 3-path crown decomposition,

we have a P3-packing in G[H ∪ C] of cardinality |H| where each P3 has exactly one vertex in H . Since these P3 are covered
by H , it follows |C ∩ S| ≥ |H ∩ (V (G) \ S)|. This inequality implies that S \ (H ∪ C) is a 3-path vertex cover of size at most
|S| − |H|. �

According to the above lemma, ψ3(G) = ψ3(G[R]) + |H| follows easily by deleting C and H of a 3-path crown decom-
position. It indicates the importance of the lemma. Our aim is to provide a polynomial kernelization algorithm by using the
concept of 3-path crown decomposition. The computation of the latter one can be divided into two steps.

The first one considers the fat crown decomposition.

Lemma 2.2 (Prieto and Sloper [7]). Let G be a graph and J be a collection of independent P2’s such that |J| ≥ |N(V (J))|. Then
we can find a fat crown decomposition (H, C, R) where C ⊆ V (J) and H ⊆ N(V (J)) in linear time.

Let G be a graph and D be a dissociative set. To find a 3-path crown decomposition, we contract all edges in D and obtain
a graph G∗. By the above lemma, for some given dissociative set D in G either one can find a fat crown decomposition in
linear time, which perhaps is a 3-path crown decomposition, or the number of contracted edges is bounded from above by
|N(D)|. It helps us for the second step, which basically uses the property that we obtain an independent set by contracting
all edges in D.

Lemma 2.3. For a graph G and a dissociative set D, let G∗ be the graph constructed by edge contraction in D and adding
an additional vertex u′, which is only adjacent to u, for every vertex u ∈ Q ′(D). Furthermore, let us denote by D∗ the set
V (G∗) \ (V (G) \ D). If (H, C∗, R) is a double crown decomposition in G∗ such that C∗

⊆ D∗ and H ⊆ N(D∗), then
(H, V (G) \ (H ∪ R), R) is a 3-path crown decomposition in G such that V (G) \ (H ∪ R) ⊆ D and H ⊆ N(D).
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