Kernelization of the 3-path vertex cover problem

Christoph Brause*, Ingo Schiermeyer
Institute of Discrete Mathematics and Algebra, Technische Universität Bergakademie Freiberg, Prüferstraße 1, 09599 Freiberg, Germany

ARTICLE INFO

Article history:

Received 5 November 2014
Accepted 2 December 2015
Available online 22 January 2016

Keywords:

k-path vertex cover
Vertex cover
Kernelization
Crown reduction

Abstract

The 3-path vertex cover problem is an extension of the well-known vertex cover problem. It asks for a vertex set $S \subseteq V(G)$ of minimum cardinality such that $G-S$ only contains independent vertices and edges. In this paper we will present a polynomial algorithm which computes two disjoint sets T_{1}, T_{2} of vertices of G such that (i) for any 3-path vertex cover S^{\prime} in $G\left[T_{2}\right], S^{\prime} \cup T_{1}$ is a 3-path vertex cover in G, (ii) there exists a minimum 3-path vertex cover in G which contains T_{1} and (iii) $\left|T_{2}\right| \leq 6 \cdot \psi_{3}\left(G\left[T_{2}\right]\right)$, where $\psi_{3}(G)$ is the cardinality of a minimum 3-path vertex cover and T_{2} is the kernel of G.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last years the k-path vertex cover problem (k-PVCP for short) has become more and more interesting in graph theory since it is applicable to many practical problems. While there exist only a few results on k-PVCP, the number of open questions arises expeditiously. Motivated by the problem of ensuring data integrity of communication in wireless sensor networks using the k-generalized Canvas scheme in [6], Brešar et al. introduce the k-PVCP in [2].

A vertex subset $S \subseteq V(G)$ is a k-path vertex cover of G if $G-S$ contains no (not necessarily induced) path of length $k-1$ in G. It is minimum if there exists no k-path vertex cover of smaller cardinality. We denote by $\psi_{k}(G)$ the cardinality of a minimum k-path vertex cover.

For $k=2$, the k-PVCP is the well-known vertex cover problem (VCP for short), which is known to be NP-hard. Moreover, in [2] it is shown that the computation of $\psi_{k}(G)$ is $N P$-hard for $k \geq 3$.

Although the k-PVCP is $N P$-hard, there exist some approximation algorithms for $k \leq 3$. For example, using Nemhauser's and Trotter's result in [5], we have a factor-2 algorithm for $k=2$. For larger k, it is widely unknown whether one can approximate the k-PVCP within a factor smaller than k. An exceptional case is $k=3$, where two factor- 2 algorithms are given by Tu and Zhou in [9] and [10].

For $k=3$, one can find an approximation algorithm and some bounds for $\psi_{3}(G)$ in cubic graphs in [8], whereas [4] gives an exact algorithm to solve the 3-PVCP in time $\mathcal{O}^{*}\left(1.5171^{n}\right)$ for general graphs.
$B y$ Nemhauser's and Trotter's paper in 1975 [5], the question of finding the "hard part" of an NP-hard problem in a graph G arises. In that sense "hard part" means kernel, i.e. the remaining set of vertices after applying some polynomial reduction techniques. In [5], the authors deal with the VCP, i.e. 2-PVCP, and its kernel. Given d, the generalization of the VCP of Fellows et al. in [3] considers the problem of finding a vertex set of minimum cardinality whose removal from G yields a graph possessing vertices of degree at most d. Their result provides a polynomial algorithm computing a vertex set T such that the cardinality of an optimal solution is at most $|T| /\left(d^{3}+4 d^{2}+6 d+4\right)$. It gives us a first kernelization algorithm for the 3-PVCP.

[^0]On the one hand, we have two factor-2 approximation algorithms [9,10], which do not use kernelization techniques. On the other hand, we can compute a kernel $T \subseteq V(G)$ polynomially, such that $|T| \leq 15 \cdot \psi_{3}(G[T]$) (by [3] for $d=1$). Since the range between 2 and 15 is really large, the aim of this paper is to provide a polynomial algorithm which computes a better kernel T for an arbitrary graph G, i.e. $|T| \leq 6 \cdot \psi_{3}(G[T])$.

We consider finite, simple and undirected graphs and use [1] for terminology and notation which are not defined here.
A vertex subset $S \subseteq V(G)$ is independent (dissociative) if $G[S]$ contains no P_{2} (no P_{3}). A set of vertex disjoint P_{3} 's is a P_{3}-packing. It is maximal if there exists no P_{3} in G containing no vertex of a P_{3} in the P_{3}-packing. For some maximal P_{3}-packing \mathcal{P}, the graph $G[V(G) \backslash V(\mathcal{P})]$ is the disjoint union of isolated vertices and isolated edges, i.e. $V(G) \backslash V(\mathcal{P})$ is a dissociative set in G. Let us denote by $\mathcal{P}_{2}(\mathcal{P})$ its set of isolated P_{2} 's and by $\mathcal{P}_{1}(\mathcal{P})$ its set of isolated vertices. Furthermore, let us define $Q(\mathscr{P})$ as set of those vertices in $V(\mathscr{P})$ which have a neighbour in $V\left(\mathscr{P}_{1}(\mathcal{P})\right) \cup V\left(\mathscr{P}_{2}(\mathcal{P})\right)$. If P is a path in \mathcal{P}, then let us denote by $Q(P)$ the set of vertices in P which are in $Q(\mathscr{P})$. To simplify notation, let us say vertices in $V(\mathscr{P})$ are black and vertices in $V\left(\mathcal{P}_{1}(\mathcal{P})\right) \cup V\left(\mathcal{P}_{2}(\mathcal{P})\right)$ are white for some given \mathcal{P}. Moreover, all vertices in $Q(\mathscr{P})$ are called contact vertices. We define the white neighbourhood $N^{w}(u)$ of a black vertex u as the subset of white vertices which are either adjacent to u or have one white common neighbour with u. Additionally, let us define $N_{1}^{w}(u)$ and $N_{2}^{w}(u)$ as $N^{w}(u) \cap V\left(\mathcal{P}_{1}(\mathcal{P})\right)$ and $N^{w}(u) \cap V\left(\mathscr{P}_{2}(\mathcal{P})\right)$, respectively. Again to simplify notation, let us denote for some dissociative set D by $Q^{\prime}(D)$ the set of all vertices $u \in N(D)$ for which every neighbour in D is not isolated in $G[D]$. To generalize our concepts, let us define by $f(T)$ the set $\bigcup_{u \in T} f(u) \backslash T$ for some function $f: V(G) \rightarrow 2^{V(G)}$ and some set $T \subseteq V(G)$.

2. Results

Our main objective is to provide a polynomial algorithm computing a kernel of the 3-path vertex cover problem in G. We need two important tools for it. First, we introduce the concept of a 3-path crown decomposition.

Definition. A 3-path crown decomposition (H, C, R) is a partition of the vertices of the graph G such that
(i) H (the header) separates C and R, i.e. there exist no edges between C and R,
(ii) C (the crown) is a dissociative set in G,
(iii) there exists a function $F: H \rightarrow\binom{c \cup H}{3}$ such that $\{G[F(u)]: u \in H\}$ is a P_{3}-packing in $G[H \cup C]$ of cardinality $|H|$ whose every path contains exactly one vertex of H.

Special cases of the 3-path crown decomposition are introduced by Prieto and Sloper in [7] and are known as fat crown decomposition and double crown decomposition. The first one requires the additional property that only end-vertices of the P_{3} 's in the P_{3}-packing are elements of H while the second one considers C as an independent set in G.

The usefulness of the 3-path crown decomposition is presented in the next lemma.
Lemma 2.1. A graph G that admits a 3-path crown decomposition (H, C, R) has a 3-path vertex cover of size at most c if and only if $G[R]$ has a 3-path vertex cover of size at most $c-|H|$.
Proof. Since C is a dissociative set in $G, S^{\prime} \cup H$ is a 3-path vertex cover of size $\left|S^{\prime}\right|+|H|$ in G if $S^{\prime} \subseteq R$ is a 3-path vertex cover in $G[R]$.

Let S be a 3-path vertex cover in G. Assume $H \cap(V(G) \backslash S) \neq \emptyset$. Due to the definition of a 3-path crown decomposition, we have a P_{3}-packing in $G[H \cup C]$ of cardinality $|H|$ where each P_{3} has exactly one vertex in H. Since these P_{3} are covered by H, it follows $|C \cap S| \geq|H \cap(V(G) \backslash S)|$. This inequality implies that $S \backslash(H \cup C)$ is a 3-path vertex cover of size at most $|S|-|H|$.

According to the above lemma, $\psi_{3}(G)=\psi_{3}(G[R])+|H|$ follows easily by deleting C and H of a 3-path crown decomposition. It indicates the importance of the lemma. Our aim is to provide a polynomial kernelization algorithm by using the concept of 3-path crown decomposition. The computation of the latter one can be divided into two steps.

The first one considers the fat crown decomposition.
Lemma 2.2 (Prieto and Sloper [7]). Let G be a graph and \mathcal{g} be a collection of independent P_{2} 's such that $|\mathcal{F}| \geq|N(V(\mathcal{g}))|$. Then we can find a fat crown decomposition (H, C, R) where $C \subseteq V(\mathcal{q})$ and $H \subseteq N(V(\mathcal{q}))$ in linear time.

Let G be a graph and D be a dissociative set. To find a 3-path crown decomposition, we contract all edges in D and obtain a graph G^{*}. By the above lemma, for some given dissociative set D in G either one can find a fat crown decomposition in linear time, which perhaps is a 3-path crown decomposition, or the number of contracted edges is bounded from above by $|N(D)|$. It helps us for the second step, which basically uses the property that we obtain an independent set by contracting all edges in D.

Lemma 2.3. For a graph G and a dissociative set D, let G^{*} be the graph constructed by edge contraction in D and adding an additional vertex u^{\prime}, which is only adjacent to u, for every vertex $u \in Q^{\prime}(D)$. Furthermore, let us denote by D^{*} the set $V\left(G^{*}\right) \backslash(V(G) \backslash D)$. If $\left(H, C^{*}, R\right)$ is a double crown decomposition in G^{*} such that $C^{*} \subseteq D^{*}$ and $H \subseteq N\left(D^{*}\right)$, then $(H, V(G) \backslash(H \cup R), R)$ is a 3-path crown decomposition in G such that $V(G) \backslash(H \cup R) \subseteq D$ and $H \subseteq N(D)$.

https://daneshyari.com/en/article/4646713

Download Persian Version:
https://daneshyari.com/article/4646713

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brause@math.tu-freiberg.de (C. Brause), schiermeyer@math.tu-freiberg.de (I. Schiermeyer).
 http://dx.doi.org/10.1016/j.disc.2015.12.006
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

