Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Kernelization of the 3-path vertex cover problem

Christoph Brause*, Ingo Schiermeyer

Institute of Discrete Mathematics and Algebra, Technische Universität Bergakademie Freiberg, Prüferstraße 1, 09599 Freiberg, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 5 November 2014 Accepted 2 December 2015 Available online 22 January 2016

Keywords: k-path vertex cover Vertex cover Kernelization Crown reduction

1. Introduction

During the last years the *k*-path vertex cover problem (*k*-PVCP for short) has become more and more interesting in graph theory since it is applicable to many practical problems. While there exist only a few results on *k*-PVCP, the number of open questions arises expeditiously. Motivated by the problem of ensuring data integrity of communication in wireless sensor networks using the k-generalized Canvas scheme in [6], Brešar et al. introduce the *k*-PVCP in [2].

A vertex subset $S \subseteq V(G)$ is a *k*-path vertex cover of *G* if G - S contains no (not necessarily induced) path of length k - 1 in *G*. It is minimum if there exists no *k*-path vertex cover of smaller cardinality. We denote by $\psi_k(G)$ the cardinality of a minimum *k*-path vertex cover.

For k = 2, the *k*-PVCP is the well-known vertex cover problem (VCP for short), which is known to be *NP*-hard. Moreover, in [2] it is shown that the computation of $\psi_k(G)$ is *NP*-hard for $k \ge 3$.

Although the *k*-PVCP is *NP*-hard, there exist some approximation algorithms for $k \le 3$. For example, using Nemhauser's and Trotter's result in [5], we have a factor-2 algorithm for k = 2. For larger *k*, it is widely unknown whether one can approximate the *k*-PVCP within a factor smaller than *k*. An exceptional case is k = 3, where two factor-2 algorithms are given by Tu and Zhou in [9] and [10].

For k = 3, one can find an approximation algorithm and some bounds for $\psi_3(G)$ in cubic graphs in [8], whereas [4] gives an exact algorithm to solve the 3-PVCP in time $\mathcal{O}^*(1.5171^n)$ for general graphs.

By Nemhauser's and Trotter's paper in 1975 [5], the question of finding the "hard part" of an *NP*-hard problem in a graph *G* arises. In that sense "hard part" means kernel, i.e. the remaining set of vertices after applying some polynomial reduction techniques. In [5], the authors deal with the VCP, i.e. 2-PVCP, and its kernel. Given *d*, the generalization of the VCP of Fellows et al. in [3] considers the problem of finding a vertex set of minimum cardinality whose removal from *G* yields a graph possessing vertices of degree at most *d*. Their result provides a polynomial algorithm computing a vertex set *T* such that the cardinality of an optimal solution is at most $|T|/(d^3 + 4d^2 + 6d + 4)$. It gives us a first kernelization algorithm for the 3-PVCP.

* Corresponding author. E-mail addresses: brause@math.tu-freiberg.de (C. Brause), schiermeyer@math.tu-freiberg.de (I. Schiermeyer).

http://dx.doi.org/10.1016/j.disc.2015.12.006 0012-365X/© 2015 Elsevier B.V. All rights reserved.

The 3-path vertex cover problem is an extension of the well-known vertex cover problem.

It asks for a vertex set $S \subseteq V(G)$ of minimum cardinality such that G - S only contains

independent vertices and edges. In this paper we will present a polynomial algorithm

which computes two disjoint sets T_1 , T_2 of vertices of G such that (i) for any 3-path vertex cover S' in $G[T_2]$, $S' \cup T_1$ is a 3-path vertex cover in G, (ii) there exists a minimum 3-path

vertex cover in *G* which contains T_1 and (iii) $|T_2| \leq 6 \cdot \psi_3(G[T_2])$, where $\psi_3(G)$ is the

cardinality of a minimum 3-path vertex cover and *T*₂ is the kernel of *G*.

© 2015 Elsevier B.V. All rights reserved.

On the one hand, we have two factor-2 approximation algorithms [9,10], which do not use kernelization techniques. On the other hand, we can compute a kernel $T \subseteq V(G)$ polynomially, such that $|T| \le 15 \cdot \psi_3(G[T])$ (by [3] for d = 1). Since the range between 2 and 15 is really large, the aim of this paper is to provide a polynomial algorithm which computes a better kernel T for an arbitrary graph G, i.e. $|T| \le 6 \cdot \psi_3(G[T])$.

We consider finite, simple and undirected graphs and use [1] for terminology and notation which are not defined here. A vertex subset $S \subseteq V(G)$ is *independent* (*dissociative*) if G[S] contains no P_2 (no P_3). A set of vertex disjoint P_3 's is a P_3 -packing. It is maximal if there exists no P_3 in G containing no vertex of a P_3 in the P_3 -packing. For some maximal P_3 -packing \mathcal{P} , the graph $G[V(G) \setminus V(\mathcal{P})]$ is the disjoint union of isolated vertices and isolated edges, i.e. $V(G) \setminus V(\mathcal{P})$ is a dissociative set in G. Let us denote by $\mathcal{P}_2(\mathcal{P})$ its set of isolated P_2 's and by $\mathcal{P}_1(\mathcal{P})$ its set of isolated vertices. Furthermore, let us define $Q(\mathcal{P})$ as set of those vertices in $V(\mathcal{P})$ which have a neighbour in $V(\mathcal{P}_1(\mathcal{P})) \cup V(\mathcal{P}_2(\mathcal{P}))$. If P is a path in \mathcal{P} , then let us denote by Q(P) the set of vertices in P which are in $Q(\mathcal{P})$. To simplify notation, let us say vertices in $V(\mathcal{P})$ are black and vertices in $V(\mathcal{P}_1(\mathcal{P})) \cup V(\mathcal{P}_2(\mathcal{P}))$ are white for some given \mathcal{P} . Moreover, all vertices in $Q(\mathcal{P})$ are called *contact* vertices. We define the white neighbourhood $N^w(u)$ of a black vertex u as the subset of white vertices which are either adjacent to u or have one white common neighbour with u. Additionally, let us define $N_1^w(u)$ and $N_2^w(u)$ as $N^w(u) \cap V(\mathcal{P}_1(\mathcal{P}))$ and $N^w(u) \cap V(\mathcal{P}_2(\mathcal{P}))$, respectively. Again to simplify notation, let us denote for some dissociative set D by Q'(D) the set of all vertices $u \in N(D)$ for which every neighbour in D is not isolated in G[D]. To generalize our concepts, let us define by f(T)the set $\bigcup_{u \in T} f(u) \setminus T$ for some function $f: V(G) \to 2^{V(G)}$ and some set $T \subseteq V(G)$.

2. Results

Our main objective is to provide a polynomial algorithm computing a kernel of the 3-path vertex cover problem in *G*. We need two important tools for it. First, we introduce the concept of a 3-path crown decomposition.

Definition. A 3-*path crown decomposition* (H, C, R) is a partition of the vertices of the graph G such that

- (i) *H* (the header) separates *C* and *R*, i.e. there exist no edges between *C* and *R*,
- (ii) C (the crown) is a dissociative set in G,
- (iii) there exists a function $F : H \to \begin{pmatrix} C \cup H \\ 3 \end{pmatrix}$ such that $\{G[F(u)] : u \in H\}$ is a P_3 -packing in $G[H \cup C]$ of cardinality |H| whose every path contains exactly one vertex of H.

Special cases of the 3-path crown decomposition are introduced by Prieto and Sloper in [7] and are known as *fat crown decomposition* and *double crown decomposition*. The first one requires the additional property that only end-vertices of the P_3 's in the P_3 -packing are elements of H while the second one considers C as an independent set in G.

The usefulness of the 3-path crown decomposition is presented in the next lemma.

Lemma 2.1. A graph *G* that admits a 3-path crown decomposition (H, C, R) has a 3-path vertex cover of size at most *c* if and only if *G*[*R*] has a 3-path vertex cover of size at most c - |H|.

Proof. Since *C* is a dissociative set in *G*, $S' \cup H$ is a 3-path vertex cover of size |S'| + |H| in *G* if $S' \subseteq R$ is a 3-path vertex cover in *G*[*R*].

Let *S* be a 3-path vertex cover in *G*. Assume $H \cap (V(G) \setminus S) \neq \emptyset$. Due to the definition of a 3-path crown decomposition, we have a P_3 -packing in $G[H \cup C]$ of cardinality |H| where each P_3 has exactly one vertex in *H*. Since these P_3 are covered by *H*, it follows $|C \cap S| \ge |H \cap (V(G) \setminus S)|$. This inequality implies that $S \setminus (H \cup C)$ is a 3-path vertex cover of size at most |S| - |H|. \Box

According to the above lemma, $\psi_3(G) = \psi_3(G[R]) + |H|$ follows easily by deleting *C* and *H* of a 3-path crown decomposition. It indicates the importance of the lemma. Our aim is to provide a polynomial kernelization algorithm by using the concept of 3-path crown decomposition. The computation of the latter one can be divided into two steps.

The first one considers the fat crown decomposition.

Lemma 2.2 (Prieto and Sloper [7]). Let G be a graph and \mathcal{J} be a collection of independent P_2 's such that $|\mathcal{J}| \ge |N(V(\mathcal{J}))|$. Then we can find a fat crown decomposition (H, C, R) where $C \subseteq V(\mathcal{J})$ and $H \subseteq N(V(\mathcal{J}))$ in linear time.

Let *G* be a graph and *D* be a dissociative set. To find a 3-path crown decomposition, we contract all edges in *D* and obtain a graph G^* . By the above lemma, for some given dissociative set *D* in *G* either one can find a fat crown decomposition in linear time, which perhaps is a 3-path crown decomposition, or the number of contracted edges is bounded from above by |N(D)|. It helps us for the second step, which basically uses the property that we obtain an independent set by contracting all edges in *D*.

Lemma 2.3. For a graph *G* and a dissociative set *D*, let *G*^{*} be the graph constructed by edge contraction in *D* and adding an additional vertex *u'*, which is only adjacent to *u*, for every vertex $u \in Q'(D)$. Furthermore, let us denote by *D*^{*} the set $V(G^*) \setminus (V(G) \setminus D)$. If (H, C^*, R) is a double crown decomposition in *G*^{*} such that $C^* \subseteq D^*$ and $H \subseteq N(D^*)$, then $(H, V(G) \setminus (H \cup R), R)$ is a 3-path crown decomposition in *G* such that $V(G) \setminus (H \cup R) \subseteq D$ and $H \subseteq N(D)$. Download English Version:

https://daneshyari.com/en/article/4646713

Download Persian Version:

https://daneshyari.com/article/4646713

Daneshyari.com