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a b s t r a c t

It is shown inYoshiara (2004) that, if d-dimensional dual hyperovals exist inV (n, 2) (GF(2)-
vector space of rank n), then 2d + 1 ≤ n ≤ (d + 1)(d + 2)/2 + 2, and conjectured
that n ≤ (d + 1)(d + 2)/2. Known bilinear dual hyperovals in V ((d + 1)(d + 2)/2, 2)
are the Huybrechts dual hyperoval and the Buratti–Del Fra dual hyperoval. In this paper,
we investigate on the covering map π : S′

c(l
′,GF(2r ′ )) → Sc(l,GF(2r )), where the dual

hyperovals S′
c(l

′,GF(2r ′ )) and Sc(l,GF(2r )) are constructed in Taniguchi (2014). Using
the result, we show that the Buratti–Del Fra dual hyperoval has a bilinear quotient in
V (2d + 1, 2) if d is odd. On the other hand, we show that the Huybrechts dual hyperoval
has no bilinear quotient in V (2d + 1, 2). We also determine the automorphism group of
Sc(l,GF(2r )), and show that Aut(Sc(l2,GF(2rl1 ))) < Aut(Sc(l,GF(2r ))).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Higher dimensional dual hyperovals are defined by Huybrechts and Pasini in [7]. In this paper, we only consider dual
hyperovals over the binary field GF(2).

Let n and d be integers with n > d + 1 ≥ 3. Let U = V (n, 2) be a vector space of rank n over GF(2). A family S of vector
subspaces of rank d + 1 in U is called a d-dimensional dual hyperoval if it satisfies the following conditions:

(1) any two distinct members of S intersect at a subspace of rank one,
(2) any three mutually distinct members of S intersect trivially,
(3) the union of the members of S generates U , and
(4) there are exactly 2d+1 members of S.

We call the vector space U the ambient space of the dual hyperoval S, and we say that S is a dual hyperoval in U .
Let S1 be a d-dimensional dual hyperoval inU1 and S2 a d-dimensional dual hyperoval inU2. If there is a surjective GF(2)-

linear mapping π : U1 → U2 such that π(S1) = S2, which we sometimes say a covering map π : S1 → S2, we call S1 a
cover of S2 and S2 a quotient of S1. If π induces an isomorphism of U1 and U2, we say that S1 is isomorphic to S2. We also
say a dual hyperoval S is simply connected if any cover S′ of S is isomorphic to S.

It is proved in [12] that, if d-dimensional dual hyperovals exist in V (n, 2), then 2d + 1 ≤ n ≤ (d + 1)(d + 2)/2 + 2, and
conjectured that n ≤ (d + 1)(d + 2)/2.

We recall the definition of bilinear dual hyperovals. Let V be a GF(2)-vector space of rank d + 1, and W a GF(2)-vector
space of rank l. A dual hyperoval S = {X(t) | t ∈ V } in V⊕W is said to be a bilinear dual hyperoval if there is aGF(2)-bilinear
mapping B : V ⊕ V → W such that X(t) = {(x, B(x, t)) | x ∈ V } ⊂ V ⊕ W for any t ∈ V . A bilinear dual hyperoval has a
translation group T := {ta | a ∈ V }, which acts regularly on S = {X(t) | t ∈ V } as X(t)ta = X(t+a) for any t ∈ V , defined by
the linear transformation ta : V ⊕W ∋ (x, y) → (x, y+ B(x, a)) ∈ V ⊕W . We recall that T stabilizesW = {(0, y) | y ∈ W }
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and the centralizer CV⊕W (T ) of T in V ⊕ W coincides with W . We call a bilinear dual hyperoval symmetric if the bilinear
mapping is symmetric, i.e., B(x, t) = B(t, x) for any x, t ∈ V . (See [5] or [8] for more details.)

Known bilinear dual hyperovals in V ((d + 1)(d + 2)/2, 2) are the Huybrechts dual hyperoval [6] and the Buratti–Del
Fra dual hyperoval (see [1,11]). In this paper, we investigate on the covering map π : S′

c(l
′,GF(2r ′)) → Sc(l,GF(2r)) in

Sections 3 and 7,where the dual hyperovalsS′
c(l

′,GF(2r ′)) andSc(l,GF(2r)) are constructed in [9]. Using this result, we show
that the Buratti–Del Fra dual hyperoval has a bilinear quotient in V (2d + 1, 2) if d is odd. On the other hand, we show that
the Huybrechts dual hyperoval has no bilinear quotient in V (2d + 1, 2) in Section 4. We also determine the automorphism
group of Sc(l,GF(2r)) in Sections 5 and 6, and show that Aut(Sc(l2,GF(2rl1))) < Aut(Sc(l,GF(2r))) in Section 7.

2. A dual hyperoval Sc(l,GF(2r)) for c ∈ GF(2r) with Tr(c) = 1

In this section, we recall the dual hyperovals constructed in [9]. Let l ≥ 1 and r ≥ 1 be integers with d = lr ≥ 4 and
GF(2r) a finite field of 2r elements. We denote by I(d) the set of triples (l, r; c) of positive integers l, r with lr = d and
an element c of GF(2r) with 1 = Tr(c) =

r−1
i=0 c2

i
. In [9], for every d ≥ 4 and every triple (l, r; c) in I(d), we construct a

symmetric bilinear dual hyperoval, denoted by Sc(l,GF(2r)), with the ambient space of rank ((1/r)d2+3d+2)/2 as follows.
Let V1 be a GF(2r)-vector space of rank l with a basis {ei | 1 ≤ i ≤ l} and V2 a GF(2r)-vector space of rank l + 1 with a

basis {ei | 0 ≤ i ≤ l}. Let V ⊂ V2 be a GF(2)-vector space of rank rl + 1 generated by V1 and e0, i.e., V = V1 ⊕ ⟨e0⟩ as a
GF(2)-vector space. Let c ∈ GF(2r) be a non-zero element such that the absolute trace Tr(c) = 1. Let I = {0, 1, . . . , l} and
I0 = I \ {0}. In V2 ⊗GF(2r ) V2, letWc be the GF(2r)-vector subspace generated by

ei ⊗GF(2r ) ej − ej ⊗GF(2r ) ei for all i, j ∈ I with i < j,
e0 ⊗GF(2r ) e0 and c(ei ⊗GF(2r ) ei) − e0 ⊗GF(2r ) ei for all i ∈ I0.

We denote by x⊗GF(2r ) y, or sometimes simply by x⊗c y, the image x⊗GF(2r ) y + Wc of a vector x⊗GF(2r ) y ∈ V2 ⊗GF(2r ) V2
under the canonical projection of V2 ⊗GF(2r ) V2 onto (V2 ⊗GF(2r ) V2)/Wc . (If we consider the image of the tensor products of x
and y above over several different fields, such as extension fields of GF(2r) or subfields of GF(2r), we have to use the former
symbol to distinguish them.) Notice that x⊗c e0 = e0 ⊗c x = (cx) ⊗c x = x⊗c(cx) for any x ∈ V1 and e0 ⊗c e0 = 0 in
(V2 ⊗GF(2r ) V2)/Wc .

Let us defineWs ⊂ V1 ⊗GF(2r ) V1 as a GF(2r)-vector subspace generated by ei ⊗GF(2r ) ej − ej ⊗GF(2r ) ei for 1 ≤ i < j ≤ l. By
the universal property of the tensor product there exists aGF(2r)-linearmapping i : V1⊗V1 → V2⊗V2 with i(x⊗y) = x⊗y.
Moreover if ν : V2 ⊗ V2 → (V2 ⊗ V2)/Wc is the natural surjection, then νi has the kernelWs, thus we have Fact 1.

Fact 1 (Lemma 5 of [9]). (V1 ⊗GF(2r ) V1)/Ws = (V2 ⊗GF(2r ) V2)/Wc .

We call (V1 ⊗GF(2r ) V1)/Ws the symmetric tensor space of V1 over GF(2r), and denote it by Sym(V1 ⊗GF(2r ) V1). In this note,
we sometimes use the following proposition.

Proposition 2. Let L ∈ GL(V1, 2) such that (xL) ⊗GF(2r ) y = x⊗GF(2r )(yL) for any x, y ∈ V1, then xL = ax for some
a ∈ GF(2r) \ {0} and for any x ∈ V1.

Proof. Let B := {ei | i ∈ I0} be a basis of V1 over GF(2r). Then {ei ⊗GF(2r ) ej | 1 ≤ i ≤ j ≤ l} is a basis of Sym(V1 ⊗GF(2r ) V1)

as a GF(2r)-vector space. By assumption, we have ei ⊗GF(2r ) ei = (eiL−1) ⊗GF(2r )(eiL) for 1 ≤ i ≤ l. Let eiL−1
=


xses

and eiL =


ytet with xs, yt ∈ GF(2r) for 1 ≤ s, t ≤ l. Then ei ⊗GF(2r ) ei = (xiyi)ei ⊗GF(2r ) ei +


s≠i(xsys)es ⊗GF(2r ) es +
s<t(xsyt + xtys)es ⊗GF(2r ) et . Hence xiyi = 1, xsys = 0 for any s ≠ i and xsyt + xtys = 0 for any s ≠ t . If xs = 0 and

ys ≠ 0 for some s ≠ i, then we have xt = 0 for any t ≠ s as xsyt + xtys = 0 for any s ≠ t , which contradicts to xi ≠ 0.
Thus we have xs = 0 and ys = 0 for any s ≠ i. Therefore, there exist ai ∈ GF(2r) \ {0} such that eiL−1

= a−1
i ei and

eiL = aiei for any ei ∈ B. Next, since ei ⊗GF(2r ) ej = (eiL−1) ⊗GF(2r )(ejL) = (a−1
i ei) ⊗GF(2r )(ajej) = (a−1

i aj)ei ⊗GF(2r ) ej for
1 ≤ i < j ≤ l, we must have ai = aj for 1 ≤ i < j ≤ l. Let us put a := ai. Then we have eiL = aei for any ei ∈ B. Since
(αei)L⊗GF(2r ) ej = (αei) ⊗GF(2r )(ejL) = (aαei) ⊗GF(2r ) ej for α ∈ GF(2r) and for 1 ≤ i, j ≤ l, we have (αei)L = aαei for ei ∈ B.
As V1 = GF(2r)e1 + · · · + GF(2r)el as a GF(2)-space, the assertions follow. �

We also use the following fact in this note for several times.

Fact 3 (Proposition 11 of [9]). For non-zero x, y ∈ V , we have x⊗c y = 0 if and only if x = cy + e0 ∉ V1 in case
y ∈ V1, x = c−1(y + e0) ∈ V1 in case y ∉ V1 with y ≠ e0, and x = e0 in case y = e0.

We set d := rl. We regard Sym(V1 ⊗GF(2r ) V1) as a GF(2)-vector space of rank ((1/r)d2 + d)/2. Inside V (((1/r)d2 + 3d +

2)/2, 2) := V ⊕ (V2 ⊗ V2)/Wc = V ⊕ Sym(V1 ⊗GF(2r ) V1), for each t ∈ V , define a subspace X(t) of rank d + 1 by

X(t) := {(x, x⊗c t) | x ∈ V }.

Let us define Sc(l,GF(2r)) := {X(t) | t ∈ V }.
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