Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On some bilinear dual hyperovals

Hiroaki Taniguchi

National Institute of Technology, Kagawa College, 355, chokushicho, takamatsu city, kagawa, 761-8058, Japan

ARTICLE INFO

Article history: Received 3 October 2015 Received in revised form 25 June 2016 Accepted 4 July 2016 Available online 3 August 2016

Keywords: Dual hyperoval Buratti–Del Fra dual hyperoval Huybrechts dual hyperoval APN dual hyperoval

ABSTRACT

It is shown in Yoshiara (2004) that, if *d*-dimensional dual hyperovals exist in V(n, 2) (*GF*(2)-vector space of rank *n*), then $2d + 1 \le n \le (d + 1)(d + 2)/2 + 2$, and conjectured that $n \le (d + 1)(d + 2)/2$. Known bilinear dual hyperovals in V((d + 1)(d + 2)/2, 2) are the Huybrechts dual hyperoval and the Buratti–Del Fra dual hyperoval. In this paper, we investigate on the covering map $\pi : \delta'_c(l', GF(2^{r'})) \to \delta_c(l, GF(2^r))$, where the dual hyperovals $\delta'_c(l', GF(2^{r'}))$ and $\delta_c(l, GF(2^r))$ are constructed in Taniguchi (2014). Using the result, we show that the Buratti–Del Fra dual hyperoval has a bilinear quotient in V(2d + 1, 2) if *d* is odd. On the other hand, we show that the Huybrechts dual hyperoval has no bilinear quotient in V(2d + 1, 2). We also determine the automorphism group of $\delta_c(l, GF(2^r))$, and show that $Aut(\delta_c(l_2, GF(2^{rl_1}))) < Aut(\delta_c(l, GF(2^r)))$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Higher dimensional dual hyperovals are defined by Huybrechts and Pasini in [7]. In this paper, we only consider dual hyperovals over the binary field GF(2).

Let *n* and *d* be integers with $n > d + 1 \ge 3$. Let U = V(n, 2) be a vector space of rank *n* over *GF*(2). A family *&* of vector subspaces of rank d + 1 in *U* is called a *d*-dimensional dual hyperoval if it satisfies the following conditions:

(1) any two distinct members of δ intersect at a subspace of rank one,

- (2) any three mutually distinct members of δ intersect trivially,
- (3) the union of the members of δ generates U, and
- (4) there are exactly 2^{d+1} members of δ .

We call the vector space U the ambient space of the dual hyperoval δ , and we say that δ is a dual hyperoval in U.

Let δ_1 be a *d*-dimensional dual hyperoval in U_1 and δ_2 a *d*-dimensional dual hyperoval in U_2 . If there is a surjective *GF*(2)linear mapping $\pi : U_1 \to U_2$ such that $\pi(\delta_1) = \delta_2$, which we sometimes say a covering map $\pi : \delta_1 \to \delta_2$, we call δ_1 a cover of δ_2 and δ_2 a quotient of δ_1 . If π induces an isomorphism of U_1 and U_2 , we say that δ_1 is isomorphic to δ_2 . We also say a dual hyperoval δ is simply connected if any cover δ' of δ is isomorphic to δ .

It is proved in [12] that, if *d*-dimensional dual hyperovals exist in V(n, 2), then $2d + 1 \le n \le (d + 1)(d + 2)/2 + 2$, and conjectured that $n \le (d + 1)(d + 2)/2$.

We recall the definition of bilinear dual hyperovals. Let *V* be a *GF*(2)-vector space of rank *d* + 1, and *W* a *GF*(2)-vector space of rank *l*. A dual hyperoval $\mathscr{S} = \{X(t) \mid t \in V\}$ in $V \oplus W$ is said to be a bilinear dual hyperoval if there is a *GF*(2)-bilinear mapping $B : V \oplus V \to W$ such that $X(t) = \{(x, B(x, t)) \mid x \in V\} \subset V \oplus W$ for any $t \in V$. A bilinear dual hyperoval has a translation group $T := \{t_a \mid a \in V\}$, which acts regularly on $\mathscr{S} = \{X(t) \mid t \in V\}$ as $X(t)^{t_a} = X(t+a)$ for any $t \in V$, defined by the linear transformation $t_a : V \oplus W \ni (x, y) \mapsto (x, y + B(x, a)) \in V \oplus W$. We recall that *T* stabilizes $W = \{(0, y) \mid y \in W\}$

http://dx.doi.org/10.1016/j.disc.2016.07.002 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail address: taniguchi@t.kagawa-nct.ac.jp.

and the centralizer $C_{V \oplus W}(T)$ of T in $V \oplus W$ coincides with W. We call a bilinear dual hyperoval symmetric if the bilinear mapping is symmetric, i.e., B(x, t) = B(t, x) for any $x, t \in V$. (See [5] or [8] for more details.)

Known bilinear dual hyperovals in V((d + 1)(d + 2)/2, 2) are the Huybrechts dual hyperoval [6] and the Buratti–Del Fra dual hyperoval (see [1,11]). In this paper, we investigate on the covering map $\pi : \mathscr{S}'_c(l', GF(2^{r'})) \to \mathscr{S}_c(l, GF(2^r))$ in Sections 3 and 7, where the dual hyperovals $\mathscr{S}'_c(l', GF(2^{r'}))$ and $\mathscr{S}_c(l, GF(2^r))$ are constructed in [9]. Using this result, we show that the Buratti–Del Fra dual hyperoval has a bilinear quotient in V(2d + 1, 2) if d is odd. On the other hand, we show that the Huybrechts dual hyperoval has no bilinear quotient in V(2d + 1, 2) in Section 4. We also determine the automorphism group of $\mathscr{S}_c(l, GF(2^r))$ in Section 5 and 6, and show that $Aut(\mathscr{S}_c(l_2, GF(2^{rl_1}))) < Aut(\mathscr{S}_c(l, GF(2^r)))$ in Section 7.

2. A dual hyperoval $\mathscr{S}_c(l, GF(2^r))$ for $c \in GF(2^r)$ with Tr(c) = 1

In this section, we recall the dual hyperovals constructed in [9]. Let $l \ge 1$ and $r \ge 1$ be integers with $d = lr \ge 4$ and $GF(2^r)$ a finite field of 2^r elements. We denote by I(d) the set of triples (l, r; c) of positive integers l, r with lr = d and an element c of $GF(2^r)$ with $1 = Tr(c) = \sum_{i=0}^{r-1} c^{2^i}$. In [9], for every $d \ge 4$ and every triple (l, r; c) in I(d), we construct a symmetric bilinear dual hyperoval, denoted by $\mathscr{E}_c(l, GF(2^r))$, with the ambient space of rank $((1/r)d^2+3d+2)/2$ as follows.

Let V_1 be a $GF(2^r)$ -vector space of rank l with a basis $\{e_i \mid 1 \le i \le l\}$ and V_2 a $GF(2^r)$ -vector space of rank l + 1 with a basis $\{e_i \mid 0 \le i \le l\}$. Let $V \subset V_2$ be a GF(2)-vector space of rank rl + 1 generated by V_1 and e_0 , i.e., $V = V_1 \oplus \langle e_0 \rangle$ as a GF(2)-vector space. Let $c \in GF(2^r)$ be a non-zero element such that the absolute trace Tr(c) = 1. Let $I = \{0, 1, ..., l\}$ and $I_0 = I \setminus \{0\}$. In $V_2 \otimes_{GF(2^r)} V_2$, let W_c be the $GF(2^r)$ -vector subspace generated by

$$e_i \otimes_{GF(2^r)} e_j - e_j \otimes_{GF(2^r)} e_i$$
 for all $i, j \in I$ with $i < j$,
 $e_0 \otimes_{GF(2^r)} e_0$ and $c(e_i \otimes_{GF(2^r)} e_i) - e_0 \otimes_{GF(2^r)} e_i$ for all $i \in I_0$.

We denote by $\overline{x \otimes_{GF(2^r)} y}$, or sometimes simply by $x \otimes_c y$, the image $x \otimes_{GF(2^r)} y + W_c$ of a vector $x \otimes_{GF(2^r)} y \in V_2 \otimes_{GF(2^r)} V_2$ under the canonical projection of $V_2 \otimes_{GF(2^r)} V_2$ onto $(V_2 \otimes_{GF(2^r)} V_2)/W_c$. (If we consider the image of the tensor products of xand y above over several different fields, such as extension fields of $GF(2^r)$ or subfields of $GF(2^r)$, we have to use the former symbol to distinguish them.) Notice that $x \otimes_c e_0 = e_0 \otimes_c x = (cx) \otimes_c x = x \otimes_c (cx)$ for any $x \in V_1$ and $e_0 \otimes_c e_0 = 0$ in $(V_2 \otimes_{GF(2^r)} V_2)/W_c$.

Let us define $W_s \subset V_1 \otimes_{GF(2^r)} V_1$ as a $GF(2^r)$ -vector subspace generated by $e_i \otimes_{GF(2^r)} e_j - e_j \otimes_{GF(2^r)} e_i$ for $1 \le i < j \le l$. By the universal property of the tensor product there exists a $GF(2^r)$ -linear mapping $i : V_1 \otimes V_1 \rightarrow V_2 \otimes V_2$ with $i(x \otimes y) = x \otimes y$. Moreover if $v : V_2 \otimes V_2 \rightarrow (V_2 \otimes V_2)/W_c$ is the natural surjection, then vi has the kernel W_s , thus we have Fact 1.

Fact 1 (Lemma 5 of [9]). $(V_1 \otimes_{GF(2^r)} V_1)/W_s = (V_2 \otimes_{GF(2^r)} V_2)/W_c$.

We call $(V_1 \otimes_{GF(2^r)} V_1)/W_s$ the symmetric tensor space of V_1 over $GF(2^r)$, and denote it by $Sym(V_1 \otimes_{GF(2^r)} V_1)$. In this note, we sometimes use the following proposition.

Proposition 2. Let $L \in GL(V_1, 2)$ such that $\overline{(xL) \otimes_{GF(2^r)} y} = \overline{x \otimes_{GF(2^r)} (yL)}$ for any $x, y \in V_1$, then xL = ax for some $a \in GF(2^r) \setminus \{0\}$ and for any $x \in V_1$.

Proof. Let $B := \{e_i \mid i \in I_0\}$ be a basis of V_1 over $GF(2^r)$. Then $\{\overline{e_i \otimes_{GF(2^r)} e_j} \mid 1 \le i \le j \le l\}$ is a basis of $Sym(V_1 \otimes_{GF(2^r)} V_1)$ as a $GF(2^r)$ -vector space. By assumption, we have $\overline{e_i \otimes_{GF(2^r)} e_i} = (e_iL^{-1}) \otimes_{GF(2^r)} (e_iL)$ for $1 \le i \le l$. Let $e_iL^{-1} = \sum x_s e_s$ and $e_iL = \sum y_t e_t$ with $x_s, y_t \in GF(2^r)$ for $1 \le s, t \le l$. Then $\overline{e_i \otimes_{GF(2^r)} e_i} = (x_iy_i)\overline{e_i \otimes_{GF(2^r)} e_i} + \sum_{s \ne i} (x_sy_s)\overline{e_s \otimes_{GF(2^r)} e_s} + \sum_{s < t} (x_sy_t + x_ty_s)\overline{e_s \otimes_{GF(2^r)} e_t}$. Hence $x_iy_i = 1, x_sy_s = 0$ for any $s \ne i$ and $x_sy_t + x_ty_s = 0$ for any $s \ne t$. If $x_s = 0$ and $y_s \ne 0$ for some $s \ne i$, then we have $x_t = 0$ for any $t \ne s$ as $x_sy_t + x_ty_s = 0$ for any $s \ne t$. If $x_s = 0$ and $y_s \ne 0$ for some $s \ne i$, then we have $x_t = 0$ for any $t \ne s$ as $x_sy_t + x_ty_s = 0$ for any $s \ne t$. Which contradicts to $x_i \ne 0$. Thus we have $x_s = 0$ and $y_s = 0$ for any $s \ne i$. Therefore, there exist $a_i \in GF(2^r) \setminus \{0\}$ such that $e_iL^{-1} = a_i^{-1}e_i$ and $e_iL = a_ie_i$ for any $e_i \in B$. Next, since $\overline{e_i \otimes_{GF(2^r)} e_j} = (\overline{e_iL^{-1}}) \otimes_{GF(2^r)} (e_jL) = (\overline{a_i^{-1}e_i}) \otimes_{GF(2^r)} (a_je_j) = (a_i^{-1}a_j)\overline{e_i \otimes_{GF(2^r)} e_j}$ for $1 \le i < j \le l$. Let us put $a := a_i$. Then we have $e_iL = ae_i$ for any $e_i \in B$. Since $(\overline{\alpha e_i}) \otimes_{GF(2^r)} e_j = (\overline{\alpha e_i}) \otimes_{GF(2^r)} e_j$ for $\alpha \in GF(2^r)$ and for $1 \le i, j \le l$, we have $(\alpha e_i)L = \alpha \alpha e_i$ for $e_i \in B$. Since $(\overline{\alpha e_i})L \otimes_{GF(2^r)} e_i$ as a GF(2)-space, the assertions follow. \Box

We also use the following fact in this note for several times.

Fact 3 (Proposition 11 of [9]). For non-zero $x, y \in V$, we have $x \otimes_c y = 0$ if and only if $x = cy + e_0 \notin V_1$ in case $y \in V_1$, $x = c^{-1}(y + e_0) \in V_1$ in case $y \notin V_1$ with $y \neq e_0$, and $x = e_0$ in case $y = e_0$.

We set d := rl. We regard $Sym(V_1 \otimes_{GF(2^r)} V_1)$ as a GF(2)-vector space of rank $((1/r)d^2 + d)/2$. Inside $V(((1/r)d^2 + 3d + 2)/2, 2) := V \oplus (V_2 \otimes V_2)/W_c = V \oplus Sym(V_1 \otimes_{GF(2^r)} V_1)$, for each $t \in V$, define a subspace X(t) of rank d + 1 by

 $X(t) := \{ (x, x \otimes_c t) \mid x \in V \}.$

Let us define $\mathscr{S}_{c}(l, GF(2^{r})) := \{X(t) \mid t \in V\}.$

Download English Version:

https://daneshyari.com/en/article/4646728

Download Persian Version:

https://daneshyari.com/article/4646728

Daneshyari.com