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1. Introduction

Higher dimensional dual hyperovals are defined by Huybrechts and Pasini in [7]. In this paper, we only consider dual
hyperovals over the binary field GF(2).

Let n and d be integers withn > d + 1 > 3. Let U = V(n, 2) be a vector space of rank n over GF(2). A family 4§ of vector
subspaces of rank d 4+ 1in U is called a d-dimensional dual hyperoval if it satisfies the following conditions:

(1) any two distinct members of § intersect at a subspace of rank one,
(2) any three mutually distinct members of § intersect trivially,

(3) the union of the members of § generates U, and

(4) there are exactly 24! members of §.

We call the vector space U the ambient space of the dual hyperoval 4, and we say that 4§ is a dual hyperoval in U.

Let 8 be a d-dimensional dual hyperoval in U; and 4, a d-dimensional dual hyperoval in U,. If there is a surjective GF (2)-
linear mapping = : U; — U, such that 7 (8;) = 4,, which we sometimes say a covering map = : §; — 4, we call §; a
cover of 4, and 4, a quotient of §;. If 7 induces an isomorphism of U; and U,, we say that §; is isomorphic to 4,. We also
say a dual hyperoval § is simply connected if any cover 4’ of § is isomorphic to 4.

It is proved in [12] that, if d-dimensional dual hyperovals existin V(n, 2),then2d + 1 <n < (d+ 1)(d 4+ 2)/2 + 2, and
conjectured thatn < (d + 1)(d + 2)/2.

We recall the definition of bilinear dual hyperovals. Let V be a GF (2)-vector space of rank d 4+ 1, and W a GF(2)-vector
space of rank I. A dual hyperoval § = {X(t) | t € V}inV@®W issaid to be a bilinear dual hyperoval if there is a GF (2)-bilinear
mapping B : V@V — W such that X(t) = {(x, B(x,t)) | x € V} C V& W forany t € V. A bilinear dual hyperoval has a
translation group T := {t, | a € V}, which acts regularlyon 8 = {X(t) | t € V}asX(t)'a = X(t+a) foranyt € V,defined by
the linear transformationt, : VW 3 (x,y) — (x,y +B(x, a)) € V& W.We recall that T stabilizesW = {(0,y) |y € W}
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and the centralizer Cyqw (T) of T in V @& W coincides with W. We call a bilinear dual hyperoval symmetric if the bilinear
mapping is symmetric, i.e., B(x, t) = B(t, x) forany x, t € V. (See [5] or [8] for more details.)

Known bilinear dual hyperovals in V((d 4+ 1)(d 4 2)/2, 2) are the Huybrechts dual hyperoval [6] and the Buratti-Del
Fra dual hyperoval (see [1,11]). In this paper, we investigate on the covering map 7 : $.(/, GF(2")) — 4.(I, GF(2")) in
Sections 3 and 7, where the dual hyperovals 8. (I, GF (2“)) and 4. (I, GF(2")) are constructed in [9]. Using this result, we show
that the Buratti-Del Fra dual hyperoval has a bilinear quotient in V(2d + 1, 2) if d is odd. On the other hand, we show that
the Huybrechts dual hyperoval has no bilinear quotient in V(2d + 1, 2) in Section 4. We also determine the automorphism
group of 4. (I, GF(2")) in Sections 5 and 6, and show that Aut (8. (l,, GF(2"))) < Aut(8.(l, GF(2"))) in Section 7.

2. A dual hyperoval 4. (I, GF(2")) for ¢ € GF(2") withTr(c) = 1

In this section, we recall the dual hyperovals constructed in [9]. Let ] > 1and r > 1 be integers withd = Ir > 4 and
GF(2") a finite field of 2" elements. We denote by I(d) the set of triples (I, r; ¢) of positive integers I, r with Ir = d and
an element c of GF(2") with 1 = Tr(c) = leol cZ.In [9], for every d > 4 and every triple (I, r; ¢) in I(d), we construct a
symmetric bilinear dual hyperoval, denoted by 4. (I, GF(2")), with the ambient space of rank ((1/r)d? 4-3d+2) /2 as follows.

Let V7 be a GF(2")-vector space of rank [ with a basis {e; | 1 < i < I} and V;, a GF(2")-vector space of rank [ + 1 with a
basis {e; | 0 < i < I}. Let V C V; be a GF(2)-vector space of rank rl 4+ 1 generated by V; and ey, i.e., V = V; & (ep) as a
GF (2)-vector space. Let ¢ € GF(2") be a non-zero element such that the absolute trace Tr(c) = 1.Let = {0, 1, ..., [} and
Ip =1\ {0}.In V; ®crr) V2, let W, be the GF (2")-vector subspace generated by

€; ®GF(2') € — ¢ ®GF(2r) e; for all l,] e Iwithi < j,
eo ®cr(2r) €o and c(e; Qcrry €i) — €0 Qcr(2r) €i foralli € Io.

We denote by x ®¢r(2r) ¥, or sometimes simply by x ®. y, the image x ®crryy + W, of a vector X ®¢raryy € Va Qcrary Va
under the canonical projection of V, ®cr(2ry V2 onto (Vo Qcrary V2)/We. (If we consider the image of the tensor products of x
and y above over several different fields, such as extension fields of GF (2") or subfields of GF(2"), we have to use the former
symbol to distinguish them.) Notice that X ®. eg = ep ®:x = (cx) ®- X = xQ.(cx) forany x € V; and ey ®. e = 0 in
(V2 ®crry V2) /W.

Let us define Wy C Vi ®cr(2ry Vi as a GF(2")-vector subspace generated by e; Qcr(2r) €j — j Qcr2ry €ifor 1 <i < j < LBy
the universal property of the tensor product there exists a GF (2")-linear mappingi : Vi®V; — V, @V, withi(x®y) = x®y.
Moreover ifv : V, ® Vo, — (V, ® V,)/W, is the natural surjection, then vi has the kernel W;, thus we have Fact 1.

Fact 1 (Lemma 5 of [9]). (V1 ®crry V1)/Ws = (V2 ®crory V2) /We.

We call (Vi ®crary V1)/W; the symmetric tensor space of V; over GF(2"), and denote it by Sym(V; Qcr(2ry V1). In this note,
we sometimes use the following proposition.

Proposition 2. Let L € GL(V1,2) such that (xXL) Qcrr)y = XQcr@ry(YL) for any x,y € Vy, then XL = ax for some
a € GF(2") \ {0} and for any x € V.

Proof. Let B := {e; | i € Iy} be a basis of V; over GF(2"). Then {e; ®¢r2ryej | 1 < i <j < I} is a basis of Sym(Vy ®crery V1)
as a GF(2")-vector space. By assumption, we have &; ®crer € = (eiL™)) ®crary(eil) for 1 < i < Lletel™ = Y x.e
and el = Zytet with Xs, Yt € GF(Zr) for 1 <s,t < I. Then e; ®GF(2') e = (x,-y,-)ei ®GF(2T) e + qué,-(xsys)es ®GF(2') es +
> ot (Ve + XeYs)es ®crary €. Hence x;y; = 1,xys = 0 forany s # iand xsy; + x,ys = 0 foranys # t.Ifx, = 0 and
ys # 0 for some s # i, then we have x; = 0 for any t # s as x;y; + x;ys = 0 for any s # t, which contradicts to x; # 0.
Thus we have x;, = 0 and y; = 0 for any s # i. Therefore, there exist ; € GF(2") \ {0} such that ;L™ = ai_1ei and

el = aje; for any e; € B. Next, since e; ®GF(2”) e = (e,-L—l) ®GF(2r) (ejL) = (a,-’le,-) ®GF(2r) (ajej) = (a;laj)ei ®GF(2”) €j for
1<i<j<lLwemusthaveag; = gjfor1 <i < j <l Letusputa := a;. Then we have e;,L = ae; for any e; € B. Since
(ae)L crer) 6 = (aei) Qcrary (eL) = (ace;) Qcr(ary €jfora € GF(2") and for 1 < i,j < I, we have («e;)L = ace; fore; € B.
AsVi; = GF(2")e; + - - - + GF(2")e; as a GF(2)-space, the assertions follow. O

We also use the following fact in this note for several times.
Fact 3 (Proposition 11 of [9]). For non-zero x,y € V, we have x®.y = O ifand only if x = cy + ey & V; in case
yeVi,x=c1(y+ey) € Viincasey & V, withy # e, and x = e in case y = e.

We set d = rl. We regard Sym(V; ®cr(2ry V1) as a GF(2)-vector space of rank ((1/r)d? + d)/2. Inside V(((1/r)d* + 3d +
2)/2,2) =V & (V, @ Vy)/W. =V & Sym(Vq1 Qcrary V1), for each t € V, define a subspace X (t) of rank d + 1 by

X(t) ={(x,x®t) | x e V}.
Let us define 8. (I, GF(2")) := {X(¢t) | t € V}.
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