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a b s t r a c t

Helly’s theorem is a classical result concerning the intersection patterns of convex sets
in Rd. Two important generalizations are the colorful version and the fractional version.
Recently, Bárány et al. combined the two, obtaining a colorful fractional Helly theorem. In
this paper, we give an improved version of their result.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Helly’s theorem is one of the most well-known and fundamental results in combinatorial geometry, which has various
generalizations and applications. It was first proved by Helly [12] in 1913, but his proof was not published until 1923, after
alternative proofs by Radon [17] and König [15]. We recommend the survey paper by Amenta, Loera, and Soberón [4] for
an overview of previous results and open problems related to Helly’s theorem. Recall that a family is intersecting if the
intersection of all members is non-empty. The following is the original version of Helly’s theorem.

Theorem 1.1 (Helly’s Theorem, Helly [12]). Let F be a finite family of convex sets in Rd with |F | ≥ d + 1. Suppose every
(d + 1)-tuple of F is intersecting. Then the whole family F is intersecting.

The following variant of Helly’s theorem was found by Lovász, whose proof appeared first in a paper by Bárány [5]. Note
that the original theorem by Helly is obtained by setting F1 = F2 = · · · = Fd+1.

Theorem 1.2 (Colorful Helly Theorem, Lovász [5]). Let F1, F2, . . . , Fd+1 be finite, non-empty families (color classes) of convex
sets in Rd such that every colorful (d+ 1)-tuple is intersecting. Then, for some 1 ≤ i ≤ d+ 1, the whole family Fi is intersecting.

One way to generalize Helly’s theorem is by weakening the assumption: not necessarily all but only a positive fraction
of (d + 1)-tuples are intersecting. The following theorem shows how the conclusion changes.

Theorem 1.3 (Fractional Helly Theorem, Katchalski and Liu [14]). For every α ∈ (0, 1], there exists β = β(α, d) ∈ (0, 1] such
that the following holds: Let F be a finite family of convex sets in Rd with |F | ≥ d + 1. If at least α


|F |

d+1


of the (d + 1)-tuples

in F are intersecting, then F contains an intersecting subfamily of size at least β|F |.
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The fractional variant of Helly’s theorem first appeared as a conjecture on interval graphs, i.e. intersection graphs of
families of intervals on R. Abbott and Katchalski [1] proved that β = 1 −

√
1 − α is optimal for every family whose

intersection graph is a chordal graph. Note that, by a result of Gavril [10], interval graphs are chordal graphs.
The fractional Helly theorem for arbitrary dimensions was proved by Katchalski and Liu [14]. Their proof gives a lower

bound β ≥ α/(d + 1), and also shows that β tends to 1 as α tends to 1. Note that the original theorem by Helly is obtained
by setting α = 1. Later, the quantitatively sharp value β(α, d) = 1− (1− α)1/(d+1) was found by Kalai [13] and Eckhoff [7],
which is a consequence of the upper bound theorem for families of convex sets.

The (p, q)-theorem, another important generalization of Helly’s theorem, deals with a weaker version of the assumption,
the so-called (p, q)-condition: for every p members in a given family, there are some q members of the family that are
intersecting. For instance, the (d + 1, d + 1)-condition in Rd is the hypothesis of Helly’s theorem. The (p, q)-theorem was
proved by Alon and Kleitman [3], settling a conjecture by Hadwiger and Debrunner [11]. It states as follows.

Theorem 1.4 ((p, q)-Theorem, Alon and Kleitman [3]). Let p, q and d be integers with p ≥ q ≥ d+1. Then there exists a number
HDd(p, q) such that the following is true: Let F be a finite family of convex sets in Rd satisfying the (p, q)-condition. Then F has
a transversal consisting of at most HDd(p, q) points.

The original proof of the (p, q)-theorem is quite long and involved, using various techniques. It was later shown by Alon
et al. [2] that the most crucial ingredient is the fractional Helly theorem, and they showed that one can obtain a (p, q)-
theorem for abstract set-systems which satisfy an appropriate ‘‘fractional Helly property’’. For an overview and further
knowledge of this field, see the survey papers by Eckhoff [8,9] and the textbook by Matoušek [16].

Recently, Bárány et al. [6] established colorful and fractional versions of the (p, q)-theorem. A key ingredient in their
proof was a colorful variant of the fractional Helly theorem.

Theorem 1.5 (Bárány, Fodor, Montejano, Oliveros, and Pór [6]). Let F1, F2, . . . , Fd+1 be finite, non-empty families (color
classes) of convex sets in Rd, and assume that α ∈ (0, 1]. If at least α|F1| · · · |Fd+1| of the colorful (d+1)-tuples are intersecting,
then some Fi contains an intersecting subfamily of size α

d+1 |Fi|.

The proof in [6] follows the standard argument where each intersecting colorful (d + 1)-tuple is charged to one of its
d-tuples. (See for instance section 8.1 in [16] for a proof of the uncolored version.)

Note that for α = 1we recover the hypothesis of the colorful Helly theorem, and it is natural to ask whether the function
β tends to 1 as α tends to 1. This problem is implicitly contained in the paper by Bárány et al. [6] and was communicated to
us by F. Fodor.

Here we solve this problem by showing the following.

Theorem 1.6. For every α ∈ (0, 1], there exists β = β(α, d) ∈ (0, 1] tending to 1 as α tends to 1 such that the following holds:
Let F1, F2, . . . , Fd+1 be finite, non-empty families (color classes) of convex sets in Rd. If at least α|F1| · · · |Fd+1| of the colorful
(d + 1)-tuples are intersecting, then for some 1 ≤ i ≤ d + 1, Fi contains an intersecting subfamily of size β|Fi|.

In order to prove Theorem 1.6, we will show that for every sufficiently small ϵ > 0, if none of the Fi have an intersecting
subfamily of size (1 − ϵ)|Fi|, then there is a positive fraction of the colorful (d + 1)-tuples which are non-intersecting. This
will be done with explicit calculations.

An interesting aspect of our proof is that it is purely combinatorial (formulated in the language of uniform hypergraphs)
and uses only the colorful Helly theorem as a ‘‘black box’’. Our method can easily be modified to provide another (simple)
proof that the function β tends to 1 as α tends to 1 in the classical fractional Helly theorem (Theorem 1.3), but it does not
give the optimal bound of Kalai and Eckhoff.

2. Proof of Theorem 1.6

2.1. The matching number of hypergraphs

Let H be an r-uniform hypergraph on a vertex set X . A subset S ⊆ X is said to be an independent set in H if the
induced sub-hypergraphH[S] contains no hyperedge. The independence number α(H) ofH is the cardinality of amaximum
independent set in H . A matching of H is a set of pairwise disjoint edges in H . The matching number ν(H) of H is the
cardinality of a maximummatching in H . We need the following observation.

Observation 2.1. Let H = (X, E) be an r-uniform hypergraph with |X | = n. Suppose

α(H) < cn

for some c ∈ (0, 1]. Let M = {e1, . . . , eν} be a maximum matching in H . Note that X \ (e1 ∪ · · · ∪ eν) is an independent set in
H . If not, assume that there is an edge e contained in X \ (e1 ∪· · ·∪ eν). Then M ∪{e} is a matching inH , which is a contradiction
to the maximality of M. Thus

|X \ (e1 ∪ · · · ∪ eν)| = n − rν(H) ≤ α(H) < cn,

so ν(H) > n−cn
r .



Download English Version:

https://daneshyari.com/en/article/4646729

Download Persian Version:

https://daneshyari.com/article/4646729

Daneshyari.com

https://daneshyari.com/en/article/4646729
https://daneshyari.com/article/4646729
https://daneshyari.com

