Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Intersection properties of maximal directed cuts in digraphs G. Chiaselotti *, T. Gentile

Dipartimento di Matematica, Universitá della Calabria, Via Pietro Bucci, Cubo 30B, 87036 Arcavacata di Rende (CS), Italy

ARTICLE INFO

Article history: Received 29 November 2015 Received in revised form 12 March 2016 Accepted 5 July 2016 Available online 5 August 2016

Keywords: Directed cuts Digraphs Maximal paths Cycles

ABSTRACT

If *D* is a finite digraph, a directed cut is a subset of arcs in *D* having tail in some subset $X \subseteq V(D)$ and head in $V(D) \setminus X$. In this paper we prove two general results concerning intersections between maximal paths, cycles and maximal directed cuts in *D*. As a direct consequence of these results, we deduce that there is a path, or a cycle, in *D* that crosses each maximal directed cut.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and definitions

In this paper we always denote by D = (V(D), A(D)) a finite digraph (without multiple arcs and loops) having V(D) as its set of vertices and A(D) as its set of arcs. If a is an arc such that a = (v, w), with $v, w \in V(D)$, we say that v is the tail of a (we denote v by t(a)) and that w is the head of a (we denote w by h(a)). If $B \subseteq A(D)$, we set $T(B) = \{t(a) : a \in B\}$ and $H(B) = \{h(a) : a \in B\}. \text{ If } v \in V(D), \text{ we set } N^+(v) = \{z \in V(D) \setminus \{v\} : (v, z) \in A(D)\}, N^-(v) = \{u \in V(D) \setminus \{v\} : (u, v) \in A(D)\}, v \in V(D) \setminus \{v\} : (v, z) \in A(D)\}, v \in V(D)$ $d^+(v) = |N^+(v)|$ and $d^-(v) = |N^-(v)|$. A walk in D is a sequence $W = v_0 a_0 v_1 a_1 v_2 \dots v_{n-1} a_{n-1} v_n$, where v_0, \dots, v_n are vertices in D (i.e. elements of V(D)) and a_0, \ldots, a_{n-1} are arcs in D (i.e. elements of A(D)) such that a_i has tail in v_i and head in v_{i+1} , for $i = 0, \ldots, n-1$. We say that $a_0, a_1, \ldots, a_{n-1}$ are the arcs of W and that v_0, v_1, \ldots, v_n are the vertices of W. We set $A(W) = \{a_0, a_1, \ldots, a_{n-1}\}$ and $V(W) = \{v_0, v_1, \ldots, v_n\}$. When the arcs of W are clear from the context or unimportant, we will denote W simply by $v_0v_1 \dots v_n$. The *length* of W, denoted by l(W), is the number of its arcs, that is n with the previous notation. A *path* is a walk whose vertices are mutually distinct. If the vertices $v_0, v_1, \ldots, v_{n-1}$ are distinct, $n \ge 2$ and $v_0 = v_n$, we say that W is a cycle. When $W = v_0 v_1 \dots v_n$ is a path or a cycle and $0 \le i < j \le n$, we set $W[v_i, v_j] = v_i v_{i+1} \dots v_j$ (so that, in particular, $W[v_0, v_n] = W$). Let us note that $W[v_i, v_j]$ is a path if $v_i \neq v_j$, that we call the sub-path of W from v_i to v_i . We say that a path P is maximal in D if P is not a proper sub-path of another path in D. Therefore, if $P = v_0 v_1 \dots v_n$ is maximal, then $N^-(v_0) \subseteq \{v_1, \dots, v_n\}$ and $N^+(v_n) \subseteq \{v_0, \dots, v_{n-1}\}$. If X and Y are two subsets of V(D), we set $(X, Y)_D = \{(x, y) \in A(D) : x \in X, y \in Y\}$. If $X \subseteq V(D)$, we call directed cut of X in D the set $(X, V(D) \setminus X)_D$, that we denote by $\xi(X)$. We say that a subset $K \subseteq A(D)$ is a *directed cut* in D if $K = \xi(X)$, for some $X \subseteq V(D)$. A directed cut K is *maximal* if there is no directed cut K' such that $K \subsetneq K'$. The directed cuts (and related arguments) for particular classes of digraphs have been studied in several works, see for example [1,2,5–9,11,12]. From an algorithmic point of view, the study of directed cuts in weighted-arc digraphs is also well studied, see for example [3,4,10].

If *W* is a walk in *D* and *K* is a directed cut in *D*, we say that *W* crosses *K* if $A(W) \cap K \neq \emptyset$. If $P = v_0 a_0 v_1 a_1 v_2 \dots v_{n-1} a_{n-1} v_n$ is a path and $0 \le i < j \le n$, we say that *P* has an (i, j)-inversion if $v_i \in N^+(v_n)$ and $v_j \in N^-(v_0)$. We say that *P* has an inversion if it has an (i, j)-inversion, for some $0 \le i < j \le n$. In particular, if *P* has a (0, n)-inversion then it can be extended to a cycle.

http://dx.doi.org/10.1016/j.disc.2016.07.003 0012-365X/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: giampiero.chiaselotti@unical.it (G. Chiaselotti), gentile@mat.unical.it (T. Gentile).

In this paper we examine the family of the maximal directed cuts in *D* and we establish some links between paths, cycles and maximal directed cuts. We show how some properties of the maximal paths and cycles in *D* are strictly related to the family of the maximal directed cuts. A first problem that we study is the following: if we have a maximal path *P* in *D*, under what assumptions *P* has an inversion? There is then a non-trivial assumption, linking maximal directed cuts and maximal paths, that guarantees the existence of an inversion: if a maximal path does not cross some maximal directed cut, then the path has an inversion (see Theorem 2.2). Our second question is naturally related to the previous: in what cases a maximal path crosses each maximal directed cut? In this regard, we prove the following result: there exists a path, or a cycle, which crosses each maximal directed cut (Theorem 2.4).

2. The results

Before stating and proving the main results of this paper let us show some useful properties of maximal directed cuts.

Lemma 2.1. Let $\xi(X)$ be a maximal directed cut in a digraph D. Then:

- (i) For every $x \in X$, if $N^+(x) \subseteq X$, then $N^-(x) \subseteq V(D) \setminus X$.
- (ii) For every $y \in V(D) \setminus X$, if $N^{-}(y) \subseteq V(D) \setminus X$, then $N^{+}(y) \subseteq X$.

Proof.

- (i) If $N^+(x) \subset X$, then $\xi(X) \subset \xi(X \setminus \{x\})$. By maximality of $\xi(X)$, we have $\xi(X) = \xi(X \setminus \{x\})$. It follows that $N^-(x) \subset V(D) \setminus X$.
- (ii) If $N^-(y) \subseteq V(D) \setminus X$, then $\xi(X) \subseteq \xi(X \cup \{y\})$. By maximality of $\xi(X)$, we have $\xi(X) = \xi(X \cup \{y\})$. It follows that $N^+(y) \subseteq X$. \Box

In the next Theorem 2.2, we provide a sufficient condition (in terms of maximal directed cuts) for a maximal path to have an inversion.

Theorem 2.2. Let us assume in D that a maximal path P does not cross some maximal directed cut. Then P has an inversion.

Proof. Let $P = v_0 a_0 v_1 a_1 \dots v_{n-1} a_{n-1} v_n$. If $v_0 \in N^+(v_n)$, then *P* has a (0, *n*)-inversion. Therefore, in the rest of the proof, we can assume that $v_0 \notin N^+(v_n)$. Since *P* is a maximal path, we have then

$$N^{+}(v_{n}) \subseteq \{v_{1}, \dots, v_{n-1}\}$$
⁽¹⁾

and

$$N^{-}(v_{0}) \subseteq \{v_{1}, \dots, v_{n-1}\}.$$
(2)

Let $\xi(X)$ be a maximal directed cut in *D* such that

$$\xi(X) \cap A(P) = \emptyset. \tag{3}$$

We prove now that

$$n = l(P) > 1. \tag{4}$$

Let us note that, if $v_0 \in X$ and $v_1 \notin X$, then $a_0 \in \xi(X) \cap A(P)$, that contradicts (3). Thus $v_0 \notin X$ or $v_1 \in X$. Set $Y := \{v_0\} \cup X \setminus \{v_1\}$ and let $a \in \xi(X)$. If a has tail in v_0 then $a \in \xi(Y)$. Assume that v_0 is not the tail of a. Since $N^+(v_1) = N^-(v_0) = \emptyset$, a cannot have head in v_0 and a cannot have tail in v_1 . Hence $a \in \xi(Y)$. On the other hand, $a_0 = (v_0, v_1) \in \xi(Y)$ but $a_0 \notin \xi(X)$ by (3). Hence $\xi(X) \subsetneq \xi(Y)$ is verified.

Our next step is to show that

$$\{v_0, v_1, \dots, v_{n-1}\} \cap X \neq \emptyset.$$
⁽⁵⁾

If $v_0 \in X$, then obviously $\{v_0, v_1, \ldots, v_{n-1}\} \cap X \neq \emptyset$. Let us suppose that $v_0 \notin X$. If $N^-(v_0) \cap X \neq \emptyset$, then, by (2), $\{v_0, v_1, \ldots, v_{n-1}\} \cap X \neq \emptyset$. If $N^-(v_0) \cap X = \emptyset$, then by Lemma 2.1, part (ii), it follows that $N^+(v_0) \subseteq X$. Thus $v_1 \in N^+(v_0) \subseteq X$, so $\{v_0, v_1, \ldots, v_{n-1}\} \cap X \neq \emptyset$ also in this case.

By (5), we can choose the minimum integer $k \in \{0, 1, \dots, n-1\}$ such that $v_k \in X$. It follows then that

$$\{v_k,\ldots,v_n\}\subseteq X.$$

In fact, if (by absurd) $v_{k+1} \notin X$, then $a_k \in \xi(X) \cap A(P)$, that contradicts (3). Hence $v_{k+1} \in X$. By induction we deduce (6). In particular, by (6) we obtain

$$\{v_{n-1}, v_n\} \subseteq X. \tag{7}$$

Download English Version:

https://daneshyari.com/en/article/4646730

Download Persian Version:

https://daneshyari.com/article/4646730

Daneshyari.com