
Discrete Mathematics 340 (2017) 3217–3234

Contents lists available at ScienceDirect

Discrete Mathematics
journal homepage: www.elsevier.com/locate/disc

Notes on a theorem of Naji
Lorenzo Traldi
Lafayette College, Easton, PA, USA

a r t i c l e i n f o

Article history:
Received 3 July 2015
Received in revised form 22 January 2016
Accepted 25 July 2016
Available online 10 August 2016

Keywords:
Circle graph
Graphic matroid
Permutation graph
Split decomposition

a b s t r a c t

We present a new proof of an algebraic characterization of circle graphs due to W. Naji.
For bipartite graphs, Naji’s theorem is equivalent to an algebraic characterization of
planar matroids due to J. Geelen and B. Gerards. Naji’s theorem also yields an algebraic
characterization of permutation graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the following notion.

Definition 1. LetW = w1 . . . w2n be a double occurrence word in the letters v1, . . . , vn. The interlacement graph I(W ) is the
simple graphwith vertex-set V = {v1, . . . , vn}, in which vi and vj are adjacent if and only if they are interlaced inW , i.e., they
appear in W in the order vivjvivj or vjvivjvi. A circle graph is a simple graph that can be realized as the interlacement graph
of some double occurrence word.

As far as we know, the idea of interlacement first appeared in the form of a symmetric matrix used in Brahana’s 1921
study of curves on surfaces [8]. Interlacement graphs were studied by Zelinka [27], who credited the idea to Kotzig. During
the subsequent decades several researchers discussed graphs andmatrices defined using interlacement. Cohn and Lempel [9]
and Even and Itai [16] used them to analyze permutations, and Bouchet [3] and Read and Rosenstiehl [25] used them to study
Gauss’ problem of characterizing generic self-intersecting curves in the plane. Recognition algorithms for circle graphs have
been introduced by Bouchet [4], Gioan, Paul, Tedder and Corneil [21], Naji [23,24] and Spinrad [26].

Although Naji’s is not the best of the circle graph recognition algorithms in terms of computational complexity, it is
particularly interesting for two reasons. The first reason is that Naji’s characterization is only indirectly algorithmic; it
involves a system of equations that may be defined for any graph, which is only solvable for circle graphs. The second reason
is that the two known proofs of the theorem are quite long. The original argument ends on p. 173 of Naji’s thesis [23]. Amuch
shorter argument was given by Gasse [18], but Gasse’s argument requires Bouchet’s circle graph obstructions theorem [6],
which itself has a long and difficult proof.

A couple of years ago, Geelen and Gerards [20] characterized graphic matroids by a system of equations that resembles
Naji’s system of equations. (Indeed, they mention that Naji’s theoremmotivated their result.) The resemblance is limited to
the equations; there is a striking contrast between their concise, well-motivated proof and Naji’s long, detailed argument.
This contrast encouraged us to look for an alternative proof of Naji’s theorem; we eventually developed the one presented
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below. Although our argument is certainly not as elegant as the proof of Geelen and Gerards, it is shorter than either Naji’s
original proof or the combination of a proof of Bouchet’s obstructions theorem and Gasse’s derivation of Naji’s theorem.

In addition to proving Naji’s theorem for circle graphs in general, at the end of the paper we briefly discuss two special
cases. First, the restriction of Naji’s theorem to bipartite graphs is equivalent to the restriction of the Geelen–Gerards
characterization to planar matroids. Second, Naji’s theorem also characterizes permutation graphs.

Before proceeding we should thank Jim Geelen for his comments on Naji’s theorem. In particular, he pointed out that
although all circle graphs have solutions of Naji’s equations that arise naturally from double occurrence words, some circle
graphs also have otherNaji solutions that do not seem so natural. He conjectured that these other solutionsmight correspond
in someway to splits. (See Sections 2 and 3 for definitions, and Section 5 for examples.) Althoughwe do not address Geelen’s
conjecture directly we do provide some indirect evidence for it, as the first step of our proof of Naji’s theorem involves
showing that none of these other solutions occur in circle graphs that have no splits. (See Section 6.) We should also thank
an anonymous reader, whose comments led to Corollary 26 and several other improvements in the paper.

2. Naji’s equations and their solutions

We begin with some definitions.

Definition 2 ([23,24]). Let G be a simple graph. For each pair of distinct vertices v and w of G, let β(v, w) and β(w, v) be
distinct variables. Then the Naji equations for G are the following.

(a) For each edge vw of G, β(v, w) + β(w, v) = 1.
(b) If v, w, x are three distinct vertices of G such that vw ∈ E(G) and vx, wx ̸∈ E(G), then β(x, v) + β(x, w) = 0.
(c) If v, w, x are three distinct vertices of G such that vw, vx ∈ E(G) and wx ̸∈ E(G), then β(v, w) + β(v, x) + β(w, x) +

β(x, w) = 1.

If the Naji equations of G have a solution over GF (2), the field with two elements, then any such solution is a Naji solution
and G is a Naji graph. We use the following notation:

Definition 3. If G is a graph then B(G) denotes the set of Naji solutions of G.

Of course G is a Naji graph if and only if B(G) ̸= ∅, and elementary linear algebra guarantees that if B(G) ̸= ∅ then
|B(G)| = 2k for some k ≥ 0. In particular, if n = 1 then G is a Naji graph and B(G) = {∅}.

Notice that the three types of Naji equations are distinct. An equation of type (a) involves only two vertices, an equation
of type (b) involves no nonzero constant and an equation of type (c) has four terms. For this reason, when discussing the
Naji equations we do not always cite a specific type of equation. We might also mention two obvious consequences of the
equations, which will be useful. First: the type (b) equations imply that β(x, −) is constant on each connected component
of G − N(x). (Here N(x) denotes the open neighborhood of x, N(x) = {y ∈ V (G) | xy ∈ E(G)}.) Second: variants of a type (c)
equation are obtained by replacing β(v, w) or β(v, x) with β(w, v) + 1 or β(x, v) + 1 (respectively), and then moving each
new +1 to the right hand side.

Naji’s theorem [23,24] states that G is a Naji graph if and only if G is a circle graph. One direction of Naji’s theorem is easy.

Proposition 4. Every circle graph is a Naji graph.

Proof. Consider a double occurrence wordW . An orientation ofW is given by arbitrarily designating one appearance of each
letter as ‘‘initial’’; the other appearance is ‘‘terminal’’.We use the notation vin and vout for the initial and terminal appearances
of v, respectively. For each orientation of W , define a function β by: β(v, w) = 0 if and only if when we cyclically permute
W to begin with vin, wout precedes vout .

We claim that this β is a Naji solution of G. If vw ∈ E(G) then after cyclically permutingW to begin with vin,W will be in
the form vin . . . win . . . vout . . . wout . . . or in the form vin . . . wout . . . vout . . . win . . . . In the first case,β(v, w)+β(w, v) = 1+0
and in the second case, β(v, w) + β(w, v) = 0 + 1. For the type (b) equations, if vw ∈ E(G) and vx, wx ̸∈ E(G) then after
cyclically permuting W to begin with xin, and interchanging v and w (if necessary) so that v appears before w, W will be in
one of these forms.

xin . . . v . . . w . . . v . . . w . . . xout . . . xin . . . xout . . . v . . . w . . . v . . . w . . . .

In the first case β(x, v) + β(x, w) = 1 + 1, and in the second case β(x, v) + β(x, w) = 0 + 0. For the type (c) equations, if
vw, vx ∈ E(G) and wx ̸∈ E(G) then after cyclically permuting W to begin with vin, and interchanging w and x (if necessary)
so that w appears before x, we may presumeW is in one of these forms:

vin . . . win . . . xin . . . vout . . . xout . . . wout . . . vin . . . wout . . . xin . . . vout . . . xout . . . win . . .

vin . . . win . . . xout . . . vout . . . xin . . . wout . . . vin . . . wout . . . xout . . . vout . . . xin . . . win . . . .

Proceeding from left to right, the sum β(v, w) + β(v, x) + β(w, x) + β(x, w) is 1 + 1 + 0 + 1 or 0 + 1 + 1 + 1 for the words
in the top row, and 1 + 0 + 0 + 0 or 0 + 0 + 1 + 0 for the words in the bottom row. ■
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