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a b s t r a c t

Mathematical models of fullerenes are cubic polyhedral and spherical maps of face-type
(5, 6), that is, with pentagonal and hexagonal faces only. Any such map necessarily con-
tains exactly 12 pentagons, and it is known that for any integer α ≥ 0 except α = 1 there
exists a fullerene map with precisely α hexagons.

In this paper we consider hyperbolic analogues of fullerenes, modelled by cubic poly-
hedral maps of face-type (6, k), where k ∈ {9, 10}, on orientable surface of genus at least
two. The number of k-gons in this case depends on the genus but the number of hexagons
is again independent of the surface. For every triple k ∈ {9, 10}, g ≥ 2 and α ≥ 0, we de-
termine if there exists a cubic polyhedral map of face-type (6, k) with exactly α hexagons
on an orientable surface of genus g . The only unsolved cases are k = 10, g = 5 and α ≤ 3
when we are not able to say if a hyperbolic fullerene with these parameters exists.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fullerenes are carbon-cage molecules in which every atom is connected by bonds to exactly three next atoms. The well-
knownBuckminster fullerene C60 was found byKroto et al. [14], and later confirmed by experiments by Krätschmer et al. [13]
and Taylor et al. [18]. Since the discovery ofC60, fullerenes have attracted considerable interest of scientists all over theworld,
see e.g. [2,4,7,15,16].

If one replaces the carbon atoms by vertices, bonds by edges, and fills the smallest cycles (of lengths 5 and 6) by 2-cells,
then a fullerene is turned into a spherical embedding of cubic 3-connected graph, with faces bounded by cycles of lengths 5
and 6. Hence, mathematical model of a fullerene is a cubic, spherical and polyhedral map of face-type (5, 6).

In this paperwe studymathematicalmodels of fullerene analogues onorientable surfaces of higher genera. By ahyperbolic
k-gonal fullerenewe understand any trivalent polyhedral map on some orientable surface of genus at least two, with all faces
bounded by cycles of length 6 or k for some fixed k ≥ 7, that is of face-type (6, k), see [3]. The genus of the k-gonal fullerene is
simply the genus of its supporting surface. Analogues of fullerenes embedded on hyperbolic surfaces have been considered
earlier by a number of authors, see e.g. [5,19] or [20] and references therein. Constructions of higher genus fullerenes with
additional symmetries have been suggested in [11].

Denote by α and β the number of hexagonal and k-gonal faces, respectively, in a hyperbolic k-gonal fullerene of genus
g . By Euler’s formula, we have

β = 12(g − 1)/(k − 6), (1)
but there is no restriction on α. Hence, we have the following problem:
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Problem 1. For every k ≥ 7 and g ≥ 2, characterize all α’s such that there exists a hyperbolic k-gonal fullerene of genus g
with exactly α hexagonal faces.

We remark that the necessary conditions for existence of a hyperbolic k-gonal fullerene of genus g ≥ 2 are also sufficient
for large enough α, see [10]. However, it seems to be impossible to determine the corresponding bound for α just using the
results of [10], and moreover, the smallest values of α are the most interesting.

As regards the analogue of Problem 1 for classical fullerenes, that is for cubic, spherical and polyhedral maps of face-type
(5, 6), it is well-known that (mathematical models of) these fullerenes with precisely α hexagonal faces exist for all non-
negative values of α with the sole exception of α = 1, see [6, section 13.4]. In [3], Problem 1 is solved for the cases k = 7
and 8 and all g ≥ 2:

Theorem 2. If k ∈ {7, 8}, g ≥ 2 and α ≥ 0, then there exists a hyperbolic k-gonal fullerene of genus g with exactly α hexagonal
faces, except for k = 8, g = 2 and α ≤ 3, where no such maps exist.

(In fact, for k = 8, g = 2 and α = 3, it is claimed in [3] that a corresponding hyperbolic fullerene exists, which is false.
They claim that ‘‘the graph K9−K3, the complete graph on nine vertices with three edges forming a triangle removed, can be
embedded on the orientable surface with genus 3 due to Heffter [9]’’, while Heffter [9] only shows that K9 has an embedding
on S3. When Youngs [21] refers to Heffter’s work, it is to resolve Heawood problem for K9, but not to show the existence of
triangular embedding for K9 − K3. On the contrary, it was shown by Jungerman [12] (using computer program) that K9 − K3
has no orientable triangular embedding.)

In this paper we consider the next two values, namely k = 9 and 10. Analogous to the cases k = 7 and 8, we give a
complete solution of Problem 1 for all g ≥ 2 with the exception of cases k = 10, g = 5 and α ≤ 3, when we are not able to
state if corresponding hyperbolic 10-gonal fullerenes exist.

We remark that values k = 7, 8, 9, 10 are universal in the sense that there is a trivalent polyhedral map of face-type (6, k)
for all genera g ≥ 2. The remaining universal values are k = 12 and 18, see [3], and it will be interesting to investigate
Problem 1 for these two values of k.

In the next section we present some preliminary results and a general construction for duals of hyperbolic k-gonal
fullerenes when k ∈ {9, 10}. Section 3 is devoted to hyperbolic 9-gonal fullerenes, and Section 4 deals with hyperbolic
10-gonal fullerenes.

2. Preliminaries

A map is an embedding of a graph, possibly with loops or multiple edges, into a surface, such that every face is
homeomorphic to an open 2-cell. A map is polyhedral if the following is true, see [17, Proposition 5.5.12] and the text below.

(p1) The underlying graph of the map is simple, that is, without loops and multiple edges.
(p2) All facial walks are cycles, that is, no vertex appears more than once on the boundary of a face.
(p3) The intersection of any two faces is either empty, or it contains a unique vertex, or exactly two vertices and the edge

joining them.

Let T be a map. If we shrink every face of T to a vertex and extend every vertex of T to a face, we obtain a dual map TD.
Then T and TD have the same numbers of edges and every edge of T intersects exactly one edge of TD and vice versa. By
[17, Proposition 5.5.12 (b), (d)], a map is polyhedral if and only if its dual map is polyhedral.

Let T be a hyperbolic k-gonal fullerene of genus g and let TD be its dual map. Then TD is a polyhedral triangulation of
orientable surface of genus g in which every vertex has degree either 6 or k. However, to check polyhedrality for TD, it
suffices to check (p1), as (p2) and (p3) follow. More precisely, (p2) is implied by the fact that the underlying graph for TD

does not contain loops, and (p3) is implied by the fact that this graph does not have multiple edges and the vertex degrees
are greater than 2. Hence, we have the following proposition:

Proposition 3. Let T be a triangulation of an orientable surface of genus g ≥ 2 by a simple graph G, such that α vertices of
G have degree 6 and the remaining vertices have degree k. Then the dual of T is a hyperbolic k-gonal fullerene of genus g with
exactly α hexagonal faces.

In our constructions, we do not construct hyperbolic k-gonal fullerenes directly, instead we construct their duals. By
Proposition 3, this approach reasonably simplifies the check for polyhedrality. In all but finitely many cases we construct
the required triangulations using triangulations of tori by 6-regular simple graphs.

For k = 9, take two toroidal triangulations by 6-regular simple graphs. In each of them, cut out two adjacent facial
triangles together with the edge joining them. This leaves a 4-hole in each surface. These 4-holes are bounded by 4-cycles
with four vertices having degrees 6 and 5 distributed alternatively around the cycle. Hence, if we glue these holes together
properly, that is, we identify the boundary cycles so that in every case a vertex of degree 6 will be identified with a vertex
of degree 5 and we identify these cycles in the opposite way (so that the resulting surface is orientable when making more
gluing of this type), we obtain a triangulation of an orientable surface in which the vertex degrees are 6 and 9 only, see Fig. 1.
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