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a b s t r a c t

We study cubic graphical regular representations of the finite simple groups PSL2(q). It is
shown that such graphical regular representations exist if and only if q ≠ 7, and the gen-
erating set must consist of three involutions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a group G and a subset S ⊂ G such that 1 ∉ S and S = S−1
:= {g−1

| g ∈ S}, the Cayley graph Cay(G, S) of G is
the graph with vertex set G such that two vertices x, y are adjacent if and only if yx−1

∈ S. It is easy to see that Cay(G, S) is
connected if and only if S generates the group G. If one identifies Gwith its right regular representation, then G is a subgroup
of Aut(Cay(G, S)). We call Cay(G, S) a graphical regular representation (GRR for short) ofG if Aut(Cay(G, S)) = G. The problem
of seeking graphical regular representations for given groups has been investigated for a long time. Amajor accomplishment
for this problem is the determination of finite groups without a GRR, see [1, 16g]. It turns out that most finite groups admit
at least one GRR. For instance, every finite unsolvable group has a GRR [4].

In contrast to unrestricted GRRs, the question of whether a group has a GRR of prescribed valency is largely open.
Research on this subject have been focusing on small valencies [3,5,8]. In 2002, Fang, Li,Wang andXu [3] issued the following
conjecture.

Conjecture 1.1 ([3, Remarks on Theorem 1.3]). Every finite nonabelian simple group has a cubic GRR.

Note that any GRR of a finite simple group must be connected, for otherwise its full automorphism group would be a
wreath product. Hence if Cay(G, S) is a GRR of a finite simple group G, then S is necessarily a generating set of G. Apart from
a few small groups, Conjecture 1.1 was only known to be true for the alternating groups [5] and Suzuki groups [3], while no
counterexample was found yet. In this paper, we study cubic GRRs for finite projective special linear groups of dimension
two. In particular, Theorem 1.3 shows that Conjecture 1.1 fails for PSL2(7) but holds for all PSL2(q)with q ≠ 7.

For any subset S of a group G, denote by Aut(G, S) the group of automorphisms of G fixing S setwise. Each element in
Aut(G, S) is an automorphism of Cay(G, S) fixing the identity of G. Hence a necessary condition for Cay(G, S) to be a GRR of
G is that Aut(G, S) = 1. In [3], the authors showed that this condition is also sufficient for many cubic Cayley graphs of finite
simple groups. We state their result for simple groups PSL2(q) as follows, which is the starting point of the present paper.
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Theorem 1.2 ([3]). Let G = PSL2(q) be a simple group, where q ≠ 11 is a prime power, and S be a generating set of G with
S−1

= S and |S| = 3. Then Cay(G, S) is a GRR of G if and only if Aut(G, S) = 1.

The following are our three main results.

Theorem 1.3. For any prime power q > 5, PSL2(q) has a cubic GRR if and only if q ≠ 7.

Theorem 1.4. For each prime power q there exist involutions x and y in PSL2(q) such that the probability for a randomly chosen
involution z to make

Cay(PSL2(q), {x, y, z})

a cubic GRR of PSL2(q) tends to 1 as q tends to infinity.

Proposition 1.5. Let q > 5 be a prime power andG = PSL2(q). If Cay(G, S) is a cubic GRR of G, then S is a set of three involutions.

Theorem 1.4 shows that it is easy to make GRRs for PSL2(q) from three involutions. On the other hand, Proposition 1.5
says that one can only make GRRs for PSL2(q) from three involutions, which is a response to [5, Problem 1.2] as well. (Note
that for a cubic Cayley graph Cay(G, S), the set S either consists of three involutions, or has the form {x, y, y−1

}with o(x) = 2
and o(y) > 2.) The proof of Theorem 1.4 is at the end of Section 3, and the proofs of Theorem 1.3 and Proposition 1.5 are
in Section 4. We also pose two problems concerning cubic GRRs for other families of finite simple groups at the end of this
paper.

2. Preliminaries

The following result is well known, see for example [7, II §7 and §8].

Lemma 2.1. Let q > 5 be a prime power and d = gcd(2, q−1). Then PGL2(q) has a maximal subgroup M = D2(q+1). Moreover,
M ∩ PSL2(q) = D2(q+1)/d, and for q ∉ {7, 9} it is maximal in PSL2(q).

The next lemma concerns facts about involutions in two-dimensional linear groups which is needed in the sequel.

Lemma 2.2. Let q = pf > 5 for some prime p and G = PSL2(q). Then the following hold.

(a) There is only one conjugacy class of involutions in G.
(b) For any involution g in G,

CG(g) =

Cf
2, if p = 2,

Dq−1, if q ≡ 1 (mod 4),
Dq+1, if q ≡ 3 (mod 4).

(c) If p > 2, then for any involution α in PGL2(q), the number of involutions in CG(α) is at most (q + 3)/2.

Proof. Parts (a) and (b) can be found in [6, Lemma A.3]. To prove part (c), assume that p > 2 and α is an involution in
PGL2(q). By [6, Lemma A.3] we have CG(α) = Dq+ε with ε = ±1. As a consequence, the number of involutions in CG(α) is at
most 1 + (q + ε)/2 6 (q + 3)/2. This completes the proof. �

3. GRRs from three involutions

Recall fromLemma2.1 that PSL2(q)has amaximal subgroupD2(q+1)/d, where d = gcd(2, q−1). The following proposition
plays the central role in this paper.

Proposition 3.1. Let q = pf > 11 for some prime p, d = gcd(2, q−1), G = PSL2(q), and H = D2(q+1)/d be a maximal subgroup
of G. Then for any two involutions x, y with ⟨x, y⟩ = H, there are at least

q2 − 4d2fq − (d + 2)q − 4d2f − 3d2 + 2d − 1
d

involutions z ∈ G such that ⟨x, y, z⟩ = G and Aut(G, {x, y, z}) = 1.

Proof. Fix involutions x, y inH such that ⟨x, y⟩ = H . Identify the elements inGwith their induced inner automorphisms ofG.
In this way, G is a normal subgroup of A := Aut(G), and the elements of A act on G by conjugation. Denote by V the set of
involutions in G, and

L = {yα | α ∈ A, xα = x} ∪ {yα | α ∈ A, xα = y} ∪ {xα | α ∈ A, yα = x} ∪ {xα | α ∈ A, yα = y}.
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