Contents lists available at ScienceDirect

# **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

# Hamiltonian paths in k-quasi-transitive digraphs

## Ruixia Wang\*, Hui Zhang

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, PR China

### ARTICLE INFO

## ABSTRACT

Article history: Received 10 November 2014 Received in revised form 26 February 2016 Accepted 26 February 2016 Available online 27 April 2016

*Keywords:* Quasi-transitive digraph *k*-quasi-transitive digraph Hamiltonian path Let D = (V(D), A(D)) be a digraph and k be an integer with  $k \ge 2$ . A digraph D is k-quasitransitive, if for any path  $x_0x_1 \dots x_k$  of length k,  $x_0$  and  $x_k$  are adjacent. In this paper, we consider the traceability of k-quasi-transitive digraphs with even  $k \ge 4$ . We prove that a strong k-quasi-transitive digraph D with even  $k \ge 4$  and diam $(D) \ge k+2$  has a Hamiltonian path. Moreover, we show that a strong k-quasi-transitive digraph D such that either k is odd or k = 2 or diam(D) < k + 2 may not contain Hamiltonian paths.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Terminology and introduction

We shall assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops or multiple arcs. Let *D* be a digraph with vertex set *V*(*D*) and arc set *A*(*D*). For any  $x, y \in V(D)$ , we will write  $x \rightarrow y$  if  $xy \in A(D)$ , and also, we will write  $\overline{xy}$  if  $x \rightarrow y$  or  $y \rightarrow x$ . For disjoint subsets *X* and *Y* of *V*(*D*) or subdigraphs of *D*,  $X \rightarrow Y$  means that every vertex of *X* dominates every vertex of *Y*,  $X \Rightarrow Y$  means that there is no arc from *Y* to *X* and  $X \mapsto Y$  means that both of  $X \rightarrow Y$  and  $X \Rightarrow Y$  hold. For subsets *X*, *Y* of *V*(*D*), we define (*X*, *Y*) = { $xy \in A(D) : x \in X, y \in Y$ }. If  $X = {x}$ , then we write (*x*, *Y*) instead of ({*x*}, *Y*). Likewise, if  $Y = {y}$ , then we write (*X*, *y*) instead of (*X*, {*y*}). Let *D* be a subdigraph of *D* and  $x \in V(D) \setminus V(D')$ . We say that *x* and *D*' are adjacent if *x* and some vertex of *D* are adjacent. For  $S \subseteq V(D)$ , we denote by *D*[*S*] the subdigraph of *D* induced by the vertex set *S*. The converse of *D* is the digraph which one obtains from *D* by reversing all arcs.

Let *x* and *y* be two vertices of *V*(*D*). The *distance* from *x* to *y* in *D*, denoted d(x, y), is the minimum length of an (x, y)-path, if *y* is reachable from *x*, and otherwise  $d(x, y) = \infty$ . The distance from a set *X* to a set *Y* of vertices in *D* is  $d(X, Y) = \max\{d(x, y) : x \in X, y \in Y\}$ . The *diameter* of *D* is diam(*D*) = d(V(D), V(D)). Clearly, *D* has finite diameter if and only if it is strong.

Let  $P = y_0y_1 \dots y_k$  be a path or a cycle of *D*. For  $i < j, y_i, y_j \in V(P)$  we denote by  $P[y_i, y_j]$  the subpath of *P* from  $y_i$  to  $y_j$ . Let  $Q = q_0q_1 \dots q_n$  be a vertex-disjoint path or cycle with *P* in *D*. If there exist  $y_i \in V(P)$  and  $q_j \in V(Q)$  such that  $y_iq_j \in A(D)$ , then we will use  $P[y_0, y_i]Q[q_j, q_n]$  to denote the path  $y_0y_1 \dots y_iq_jq_{j+1} \dots q_n$ . Let *C* be a cycle of length *k* and  $V_1, V_2, \dots, V_k$  be pairwise disjoint vertex sets. The extended cycle  $C[V_1, V_2, \dots, V_k]$  is the digraph with vertex set  $V_1 \cup V_2 \cup \dots \cup V_k$  and arc set  $\bigcup_{i=1}^k \{v_iv_{i+1} : v_i \in V_i, v_{i+1} \in V_{i+1}\}$ , where subscripts are taken modulo *k*. That is, we have  $V_1 \mapsto V_2 \mapsto \dots \mapsto V_k \mapsto V_1$  and there are no other arcs in this extended cycle.

A digraph is quasi-transitive, if for any path  $x_0x_1x_2$  of length 2,  $x_0$  and  $x_2$  are adjacent. The concept of *k*-quasi-transitive digraphs was introduced in [5] as a generalization of quasi-transitive digraphs. A digraph is *k*-quasi-transitive, if for any path  $x_0x_1...x_k$  of length *k*,  $x_0$  and  $x_k$  are adjacent. The *k*-quasi-transitive digraphs have been studied in [5,3,7,6].

\* Corresponding author. E-mail address: wangrx@sxu.edu.cn (R. Wang).

http://dx.doi.org/10.1016/j.disc.2016.02.020 0012-365X/© 2016 Elsevier B.V. All rights reserved.







A digraph *D* is traceable if *D* possesses a Hamiltonian path. A digraph *D* is unilateral if, for every pair *x*, *y* of vertices of *D*, *x* is reachable from *y* or *y* is reachable from *x* (or both). A path *P* is unilateral; being unilateral is a necessary condition for traceability of digraphs. Clearly, every strong digraph is unilateral. In this paper, we consider the traceability of strong *k*-quasi-transitive digraphs. By the definition of *k*-quasi-transitive digraphs, a semicomplete bipartite digraph must be a *k*-quasi-transitive digraph with odd *k*. Clearly a semicomplete bipartite digraph  $D = (V_1, V_2)$  with  $|V_1| - |V_2| \ge 2$  has no Hamiltonian path. Hence we only consider the traceability of strong *k*-quasi-transitive digraphs with even *k*.

It can be shown that a strong *k*-quasi-transitive digraph with diam $(D) \le k + 1$  may not contain Hamiltonian paths. For example, see the following three digraphs. Let the digraph  $D_1 = C_{k+1}[V_1, V_2, ..., V_{k+1}]$  with  $V_1 = \{x_1, x'_1, x''_1\}$  and  $V_i = \{x_i\}$  for  $i \in \{2, 3, ..., k+1\}$ . Observe that  $d_{D_1}(x_1, x'_1) = k+1$  and  $d_{D_1}(x, y) \le k+1$  for any  $x, y \in V(D_1)$ . Hence diam $(D_1) = k+1$ . Let the digraph  $D_2 = D_1 \cup \{x_3x_1, x_3x'_1, x_3x''_1\}$ . Observe that  $d_{D_2}(x_{k+1}, x_k) = k$  and  $d_{D_2}(x, y) \le k$  for any  $x, y \in V(D_2)$ . Hence diam $(D_2) = k$ . Let the digraph  $D_3 = C_s[V_1, V_2, ..., V_s]$  with  $|V_1| \ge 3$ ,  $|V_i| = 1$  for  $i \in \{2, 3, ..., s\}$  and  $s \le k - 1$ . Note that diam $(D_3) = s \le k - 1$ . It is not difficult to see that the digraphs  $D_1, D_2$  and  $D_3$  are all strong *k*-quasi-transitive digraphs and do not poses any Hamiltonian path.

It can also be shown that a strong quasi-transitive digraph with diam(D) = 4 may not contain Hamiltonian paths. For example, see the following digraph. Denote a digraph  $D_4$  with vertex set  $\{x_0, x_1, x_2, x_3, x, y, z\}$  and arc set  $\{x_0x_1, x_1x_2, x_2x_3, x_3x_0, x_3x_1, x_2x_0\} \cup \{xx_i, yx_i, zx_i, x_3x, x_3y, x_3z\}$  for  $i \in \{0, 1, 2\}$ . It is easy to check that  $D_4$  is a quasi-transitive digraph. Observe that  $d_{D_4}(x_0, x) = 4$  and  $d_{D_4}(x, y) \le 4$  for any  $x, y \in V(D_4)$ . Hence diam( $D_4$ ) = 4. If P is a Hamiltonian path in  $D_4$ , then one of x, y and z must be an intermediate vertex of P, say x. Hence  $x_3x \in A(P)$  and so  $x_3y, x_3z \notin A(P)$ . Combining this with  $d^-(y) = d^-(z) = 1$ , we have y and z are both the initial vertex of P, a contradiction. Thus  $D_4$  has not Hamiltonian paths. In Section 2, we shall show that a strong k-quasi-transitive digraph D with even  $k \ge 4$  and diam(D)  $\ge k + 2$  has a Hamiltonian path.

#### 2. Main results

The following easy facts will be very useful in our proofs of main results.

**Lemma 2.1** ([5]). Let k be an integer with  $k \ge 2$ , D be a k-quasi-transitive digraph and  $u, v \in V(D)$  such that there exists a (u, v)-path. Then each of the following holds:

- (1) If d(u, v) = k, then d(v, u) = 1.
- (2) If d(u, v) = k + 1, then  $d(v, u) \le k + 1$ .

(3) Assume  $d(u, v) = n \ge k+2$ . If k is even, or k and n are both odd, then d(v, u) = 1; if k is odd and n is even, then  $d(v, u) \le 2$ .

**Lemma 2.2** ([3]). Let k be an even integer with  $k \ge 2$  and D be a k-quasi-transitive digraph. Suppose that  $P = x_0x_1 \dots x_{k+2}$  is a shortest  $(x_0, x_{k+2})$ -path. Then each of the following holds:

- (a)  $x_{k+2} \to \{x_0, x_1, \ldots, x_k\};$
- (b)  $x_{k+1} \rightarrow x_{k-i}$  for every even *i* such that  $2 \le i \le k$ .

**Lemma 2.3.** Let k be an even integer with  $k \ge 2$  and D be a k-quasi-transitive digraph. Suppose that  $P = x_0x_1 \dots x_{k+2}$  is a shortest  $(x_0, x_{k+2})$ -path. Then  $x_{k+1} \rightarrow x_{k-i}$  for every i such that  $1 \le i \le k$ .

**Proof.** By Lemma 2.2(b),  $x_{k+1} \rightarrow \{x_0, x_2, \dots, x_{k-2}\}$ . Below we prove that  $x_{k+1} \rightarrow x_{k-i}$  by induction on odd *i* such that  $1 \le i \le k - 1$ .

By Lemma 2.2(a),  $x_{k+2} \rightarrow \{x_0, x_1, \dots, x_k\}$ . Then  $x_{k+1}x_{k+2}P[x_1, x_{k-1}]$  is a path of length *k*. By the definition of *k*-quasi-transitive digraphs, we have that  $\overline{x_{k+1}x_{k-1}}$ . This, together with the minimality of *P*, implies that  $x_{k+1} \rightarrow x_{k-1}$ .

For the inductive step, let us suppose that  $x_{k+1} \rightarrow x_{k-i}$  for some odd i with  $1 \le i \le k-3$ . By Lemma 2.1(1) and  $d(x_0, x_k) = k$ , we have  $x_k \rightarrow x_0$ . Then  $x_{k+1}P[x_{k-i}, x_k]P[x_0, x_{k-(i+2)}]$  is a path of length k, which implies that  $\overline{x_{k+1}x_{k-(i+2)}}$  and  $x_{k+1} \rightarrow x_{k-(i+2)}$ . Hence  $x_{k+1} \rightarrow x_{k-i}$  for every odd i such that  $1 \le i \le k-1$ .  $\Box$ 

**Lemma 2.4** ([2]). Let D be a quasi-transitive digraph. Suppose that  $P = x_0x_1 \dots x_n$  is a shortest  $(x_0, x_n)$ -path. Then the subdigraph induced by V(P) is a semicomplete digraph and  $x_j \rightarrow x_i$  for  $1 \le i + 1 < j \le n$ , unless n = 3, in which case the arc between  $x_0$  and  $x_n$  may be absent.

Lemma 2.4 can be generalized to *k*-quasi-transitive digraphs with even *k* as follows.

**Lemma 2.5.** Let k be an even integer with  $k \ge 4$  and D be a k-quasi-transitive digraph. Suppose that  $P = x_0x_1 \dots x_n$  is a shortest  $(x_0, x_n)$ -path with  $n \ge k + 2$  in D. Then D[V(P)] is a semicomplete digraph and  $x_i \to x_i$  for  $1 \le i + 1 < j \le n$ .

**Proof.** Note that if  $\overline{x_i x_j}$  and  $1 \le i + 1 < j \le n$ , then  $x_j \to x_i$  since *P* is shortest. Hence we only need to show that  $\overline{x_i x_j}$  for  $1 \le i + 1 < j \le n$ . We prove the result by induction on *n*.

First prove the case n = k + 2. By Lemma 2.2(a),  $x_{k+2} \rightarrow \{x_0, x_1, \dots, x_k\}$ . By Lemma 2.3,  $x_{k+1} \rightarrow \{x_0, x_1, \dots, x_{k-1}\}$ . Now we show  $x_i \rightarrow \{x_0, x_1, \dots, x_{i-2}\}$  for  $2 \le i \le k$  by induction on *i*. For i = 2, the length of the path  $x_2x_3 \dots x_{k+1}x_0$  is *k*, which implies that  $\overline{x_2x_0}$ . For the inductive step, let us suppose that  $x_i \rightarrow \{x_0, x_1, \dots, x_{i-2}\}$  for  $2 \le i \le k - 1$ . Next we prove that

Download English Version:

# https://daneshyari.com/en/article/4646992

Download Persian Version:

https://daneshyari.com/article/4646992

Daneshyari.com