Hamiltonian paths in k-quasi-transitive digraphs

Ruixia Wang*, Hui Zhang
School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, PR China

ARTICLE INFO

Article history:

Received 10 November 2014
Received in revised form 26 February 2016
Accepted 26 February 2016
Available online 27 April 2016

Keywords:

Quasi-transitive digraph
k-quasi-transitive digraph
Hamiltonian path

Abstract

Let $D=(V(D), A(D))$ be a digraph and k be an integer with $k \geq 2$. A digraph D is k-quasitransitive, if for any path $x_{0} x_{1} \ldots x_{k}$ of length k, x_{0} and x_{k} are adjacent. In this paper, we consider the traceability of k-quasi-transitive digraphs with even $k \geq 4$. We prove that a strong k-quasi-transitive digraph D with even $k \geq 4$ and $\operatorname{diam}(D) \geq k+2$ has a Hamiltonian path. Moreover, we show that a strong k-quasi-transitive digraph D such that either k is odd or $k=2$ or $\operatorname{diam}(D)<k+2$ may not contain Hamiltonian paths.

© 2016 Elsevier B.V. All rights reserved.

1. Terminology and introduction

We shall assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops or multiple arcs. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. For any $x, y \in V(D)$, we will write $x \rightarrow y$ if $x y \in A(D)$, and also, we will write $\overline{x y}$ if $x \rightarrow y$ or $y \rightarrow x$. For disjoint subsets X and Y of $V(D)$ or subdigraphs of $D, X \rightarrow Y$ means that every vertex of X dominates every vertex of $Y, X \Rightarrow Y$ means that there is no arc from Y to X and $X \mapsto Y$ means that both of $X \rightarrow Y$ and $X \Rightarrow Y$ hold. For subsets X, Y of $V(D)$, we define $(X, Y)=\{x y \in A(D): x \in X, y \in Y\}$. If $X=\{x\}$, then we write (x, Y) instead of $(\{x\}, Y)$. Likewise, if $Y=\{y\}$, then we write (X, y) instead of $(X,\{y\})$. Let D^{\prime} be a subdigraph of D and $x \in V(D) \backslash V\left(D^{\prime}\right)$. We say that x and D^{\prime} are adjacent if x and some vertex of D^{\prime} are adjacent. For $S \subseteq V(D)$, we denote by $D[S]$ the subdigraph of D induced by the vertex set S. The converse of D is the digraph which one obtains from D by reversing all arcs.

Let x and y be two vertices of $V(D)$. The distance from x to y in D, denoted $d(x, y)$, is the minimum length of an (x, y)-path, if y is reachable from x, and otherwise $d(x, y)=\infty$. The distance from a set X to a set Y of vertices in D is $d(X, Y)=\max \{d(x, y): x \in X, y \in Y\}$. The diameter of D is $\operatorname{diam}(D)=d(V(D), V(D))$. Clearly, D has finite diameter if and only if it is strong.

Let $P=y_{0} y_{1} \ldots y_{k}$ be a path or a cycle of D. For $i<j, y_{i}, y_{j} \in V(P)$ we denote by $P\left[y_{i}, y_{j}\right]$ the subpath of P from y_{i} to y_{j}. Let $Q=q_{0} q_{1} \ldots q_{n}$ be a vertex-disjoint path or cycle with P in D. If there exist $y_{i} \in V(P)$ and $q_{j} \in V(Q)$ such that $y_{i} q_{j} \in A(D)$, then we will use $P\left[y_{0}, y_{i}\right] Q\left[q_{j}, q_{n}\right]$ to denote the path $y_{0} y_{1} \ldots y_{i} q_{j} q_{j+1} \ldots q_{n}$. Let C be a cycle of length k and $V_{1}, V_{2}, \ldots, V_{k}$ be pairwise disjoint vertex sets. The extended cycle $C\left[V_{1}, V_{2}, \ldots, V_{k}\right]$ is the digraph with vertex set $V_{1} \cup V_{2} \cup \ldots \cup V_{k}$ and arc set $\cup_{i=1}^{k}\left\{v_{i} v_{i+1}: v_{i} \in V_{i}, v_{i+1} \in V_{i+1}\right\}$, where subscripts are taken modulo k. That is, we have $V_{1} \mapsto V_{2} \mapsto \ldots \mapsto V_{k} \mapsto V_{1}$ and there are no other arcs in this extended cycle.

A digraph is quasi-transitive, if for any path $x_{0} x_{1} x_{2}$ of length $2, x_{0}$ and x_{2} are adjacent. The concept of k-quasi-transitive digraphs was introduced in [5] as a generalization of quasi-transitive digraphs. A digraph is k-quasi-transitive, if for any path $x_{0} x_{1} \ldots x_{k}$ of length k, x_{0} and x_{k} are adjacent. The k-quasi-transitive digraphs have been studied in [5,3,7,6].

[^0]A digraph D is traceable if D possesses a Hamiltonian path. A digraph D is unilateral if, for every pair x, y of vertices of D, x is reachable from y or y is reachable from x (or both). A path P is unilateral; being unilateral is a necessary condition for traceability of digraphs. Clearly, every strong digraph is unilateral. In this paper, we consider the traceability of strong k-quasi-transitive digraphs. By the definition of k-quasi-transitive digraphs, a semicomplete bipartite digraph must be a k-quasi-transitive digraph with odd k. Clearly a semicomplete bipartite digraph $D=\left(V_{1}, V_{2}\right)$ with $\left|V_{1}\right|-\left|V_{2}\right| \geq 2$ has no Hamiltonian path. Hence we only consider the traceability of strong k-quasi-transitive digraphs with even k.

It can be shown that a strong k-quasi-transitive digraph with $\operatorname{diam}(D) \leq k+1$ may not contain Hamiltonian paths. For example, see the following three digraphs. Let the digraph $D_{1}=C_{k+1}\left[V_{1}, V_{2}, \ldots, V_{k+1}\right]$ with $V_{1}=\left\{x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}$ and $V_{i}=\left\{x_{i}\right\}$ for $i \in\{2,3, \ldots, k+1\}$. Observe that $d_{D_{1}}\left(x_{1}, x_{1}^{\prime}\right)=k+1$ and $d_{D_{1}}(x, y) \leq k+1$ for any $x, y \in V\left(D_{1}\right)$. Hence diam $\left(D_{1}\right)=k+1$. Let the digraph $D_{2}=D_{1} \cup\left\{x_{3} x_{1}, x_{3} x_{1}^{\prime}, x_{3} x_{1}^{\prime \prime}\right\}$. Observe that $d_{D_{2}}\left(x_{k+1}, x_{k}\right)=k$ and $d_{D_{2}}(x, y) \leq k$ for any $x, y \in V\left(D_{2}\right)$. Hence $\operatorname{diam}\left(D_{2}\right)=k$. Let the digraph $D_{3}=C_{s}\left[V_{1}, V_{2}, \ldots, V_{s}\right]$ with $\left|V_{1}\right| \geq 3,\left|V_{i}\right|=1$ for $i \in\{2,3, \ldots, s\}$ and $s \leq k-1$. Note that $\operatorname{diam}\left(D_{3}\right)=s \leq k-1$. It is not difficult to see that the digraphs D_{1}, D_{2} and D_{3} are all strong k-quasi-transitive digraphs and do not poses any Hamiltonian path.

It can also be shown that a strong quasi-transitive digraph with diam $(D)=4$ may not contain Hamiltonian paths. For example, see the following digraph. Denote a digraph D_{4} with vertex set $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x, y, z\right\}$ and arc set $\left\{x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{0}, x_{3} x_{1}, x_{2} x_{0}\right\} \cup\left\{x x_{i}, y x_{i}, z x_{i}, x_{3} x, x_{3} y, x_{3} z\right\}$ for $i \in\{0,1,2\}$. It is easy to check that D_{4} is a quasi-transitive digraph. Observe that $d_{D_{4}}\left(x_{0}, x\right)=4$ and $d_{D_{4}}(x, y) \leq 4$ for any $x, y \in V\left(D_{4}\right)$. Hence $\operatorname{diam}\left(D_{4}\right)=4$. If P is a Hamiltonian path in D_{4}, then one of x, y and z must be an intermediate vertex of P, say x. Hence $x_{3} x \in A(P)$ and so $x_{3} y, x_{3} z \notin A(P)$. Combining this with $d^{-}(y)=d^{-}(z)=1$, we have y and z are both the initial vertex of P, a contradiction. Thus D_{4} has not Hamiltonian paths. In Section 2, we shall show that a strong k-quasi-transitive digraph D with even $k \geq 4$ and diam $(D) \geq k+2$ has a Hamiltonian path.

2. Main results

The following easy facts will be very useful in our proofs of main results.
Lemma 2.1 ([5]). Let k be an integer with $k \geq 2, D$ be a k-quasi-transitive digraph and $u, v \in V(D)$ such that there exists a (u, v)-path. Then each of the following holds:
(1) If $d(u, v)=k$, then $d(v, u)=1$.
(2) If $d(u, v)=k+1$, then $d(v, u) \leq k+1$.
(3) Assume $d(u, v)=n \geq k+2$. If k is even, or k and n are both odd, then $d(v, u)=1$; if k is odd and n is even, then $d(v, u) \leq 2$.

Lemma 2.2 ([3]). Let k be an even integer with $k \geq 2$ and D be a k-quasi-transitive digraph. Suppose that $P=x_{0} x_{1} \ldots x_{k+2}$ is a shortest $\left(x_{0}, x_{k+2}\right)$-path. Then each of the following holds:
(a) $x_{k+2} \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$;
(b) $x_{k+1} \rightarrow x_{k-i}$ for every even i such that $2 \leq i \leq k$.

Lemma 2.3. Let k be an even integer with $k \geq 2$ and D be a k-quasi-transitive digraph. Suppose that $P=x_{0} x_{1} \ldots x_{k+2}$ is a shortest (x_{0}, x_{k+2})-path. Then $x_{k+1} \rightarrow x_{k-i}$ for every i such that $1 \leq i \leq k$.
Proof. By Lemma 2.2(b), $x_{k+1} \rightarrow\left\{x_{0}, x_{2}, \ldots, x_{k-2}\right\}$. Below we prove that $x_{k+1} \rightarrow x_{k-i}$ by induction on odd i such that $1 \leq i \leq k-1$.

By Lemma 2.2(a), $x_{k+2} \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Then $x_{k+1} x_{k+2} P\left[x_{1}, x_{k-1}\right]$ is a path of length k. By the definition of k-quasitransitive digraphs, we have that $\overline{x_{k+1} x_{k-1}}$. This, together with the minimality of P, implies that $x_{k+1} \rightarrow x_{k-1}$.

For the inductive step, let us suppose that $x_{k+1} \rightarrow x_{k-i}$ for some odd i with $1 \leq i \leq k-3$. By Lemma 2.1(1) and $d\left(x_{0}, x_{k}\right)=k$, we have $x_{k} \rightarrow x_{0}$. Then $x_{k+1} P\left[x_{k-i}, x_{k}\right] P\left[x_{0}, x_{k-(i+2)}\right]$ is a path of length k, which implies that $\overline{x_{k+1} x_{k-(i+2)}}$ and $x_{k+1} \rightarrow x_{k-(i+2)}$. Hence $x_{k+1} \rightarrow x_{k-i}$ for every odd i such that $1 \leq i \leq k-1$.

Lemma 2.4 ([2]). Let D be a quasi-transitive digraph. Suppose that $P=x_{0} x_{1} \ldots x_{n}$ is a shortest (x_{0}, x_{n})-path. Then the subdigraph induced by $V(P)$ is a semicomplete digraph and $x_{j} \rightarrow x_{i}$ for $1 \leq i+1<j \leq n$, unless $n=3$, in which case the arc between x_{0} and x_{n} may be absent.

Lemma 2.4 can be generalized to k-quasi-transitive digraphs with even k as follows.
Lemma 2.5. Let k be an even integer with $k \geq 4$ and D be a k-quasi-transitive digraph. Suppose that $P=x_{0} x_{1} \ldots x_{n}$ is a shortest $\left(x_{0}, x_{n}\right)$-path with $n \geq k+2$ in D. Then $D[V(P)]$ is a semicomplete digraph and $x_{j} \rightarrow x_{i}$ for $1 \leq i+1<j \leq n$.
Proof. Note that if $\overline{x_{i} x_{j}}$ and $1 \leq i+1<j \leq n$, then $x_{j} \rightarrow x_{i}$ since P is shortest. Hence we only need to show that $\overline{\chi_{i} x_{j}}$ for $1 \leq i+1<j \leq n$. We prove the result by induction on n.

First prove the case $n=k+2$. By Lemma 2.2(a), $x_{k+2} \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. By Lemma 2.3, $x_{k+1} \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$. Now we show $x_{i} \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{i-2}\right\}$ for $2 \leq i \leq k$ by induction on i. For $i=2$, the length of the path $x_{2} x_{3} \ldots x_{k+1} x_{0}$ is k, which implies that $\overline{x_{2} x_{0}}$. For the inductive step, let us suppose that $x_{i} \rightarrow\left\{x_{0}, x_{1}, \ldots, x_{i-2}\right\}$ for $2 \leq i \leq k-1$. Next we prove that

https://daneshyari.com/en/article/4646992

Download Persian Version:
https://daneshyari.com/article/4646992

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: wangrx@sxu.edu.cn (R. Wang).

