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a b s t r a c t

Let φ(G, x) =
n

i=0 aix
n−i and π(G, x) =

n
i=0 bix

n−i denote the characteristic polynomial
and permanental polynomial of a graph G. In this paper, we consider the family G of
graphs that have corresponding coefficients of the same magnitude, i.e., |ai| = |bi| for
i = 0, 1, . . . , n. We prove that the graphs in this family are planar graphs. To characterize
the structures of the considered graphs, we introduce the plane ear decomposition. With
the help of the plane ear decomposition, we show the characterizations of the bipartite and
non-bipartite graphs in this family.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The graphs considered here are finite and simplewith no loops andmultiple edges. For a graph G, its vertex set is denoted
by V (G) = {v1, v2, . . . , vn}. The adjacency matrix A(G) of G is (aij)n×n, where aij = 1 if there is an edge between vi and vj
and aij = 0 otherwise. The characteristic polynomial of G is

φ(G, x) = det(xI − A(G)) =

n
i=0

aixn−i,

where I is the n×n identitymatrix. If two graphs have the same characteristic polynomial, then they are said to be cospectral.
It is known that there are many cospectral graphs [5,9,11,17].

The permanental polynomial of G by definition is

π(G, x) = per(xI − A(G)) =

n
i=0

bixn−i,

where per(·) denotes the permanent of a matrix.
To the best of our knowledge, the permanental polynomials were first introduced to differentiate cospectral graphs

[13,14]. Later, the theory of permanental polynomials attracted much attention of chemical graph-theoreticians. The per-
manental polynomials of fullerenes and conjugated molecules were investigated in [6,12]. This study revealed that the co-
efficients and zeros of the permanental polynomial are related to the structure of molecules. For certain chemical graphs,
the relations between the coefficients of the characteristic and permanental polynomials were discussed [7,10]. For general
graphs, the coefficients of the characteristic and permanental polynomials were proved to be expressed by the structure of
subgraphs [8,13].
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LetUi denote the basic figure of a graph G, which is a subgraph on i vertices such that each component is a cycle or a single
edge. Let p(Ui) be the number of components of Ui and c(Ui) the number of cycles of Ui. The coefficients of the characteristic
and permanental polynomials are

ai =


Ui⊂G

(−1)p(Ui)2c(Ui), for 1 ≤ i ≤ n, (1)

and

bi = (−1)i

Ui⊂G

2c(Ui), for 1 ≤ i ≤ n, (2)

where the summation ranges over all basic figures Ui of G. In particular, a0 = b0 = 1.
Due to the fundamental formulae (1) and (2), it is proved that the coefficients of the characteristic and permanental

polynomials of a tree have the same magnitude [4], i.e., |ai| = |bi| for each i. As a generalization of this result, we shall
consider further which types of graphs, in addition to trees, enjoy this property. For convenience, let G denote the family of
graphs Gwith |ai| = |bi| for each i. We will characterize the structure of graphs in G in this paper.

Throughout this paper, we use |C | and |P| to denote the lengths of a cycle C and a path P . Particularly, Cn denotes a cycle
of length n. The symmetric difference Ci△Cj of two cycles Ci and Cj contains only the edges that are in exactly one of Ci or Cj.

An ear of a graph G is a path that is maximal with respect to internal vertices of degree 2 in G and is contained in a
cycle of G. An ear decomposition of G is a decomposition (C , P1, . . . , Pr ) such that C is a cycle and Pi for i ≥ 1 is an ear of
C ∪ P1 ∪ · · · ∪ Pi, denoted as G = C + P1 + P2 + · · · + Pr . It was shown in [15] that ‘‘a graph G is 2-connected if and only if
G has an ear decomposition starting with any cycle of G’’. Moreover, the end-vertices of each ear in this ear decomposition
are different. In the following sections, the graphs in G will be characterized in terms of ear decompositions.

The rest of the paper is organized as follows: In Section 2, we show that the graphs in G are planar, and then introduce
the plane ear decomposition to construct a plane graph. In Section 3, we present a sufficient and necessary condition for the
bipartite graphs in G . Moreover, we give a structure characterization of the 2-connected bipartite graphs in G . In Section 4,
after deriving the properties of the non-bipartite graphs in G , we characterize the structure of such graphs.

2. The planarity of graphs belonging to G

To investigate the graphs in G , we test the planarity of these graphs, and construct the plane ear decomposition to
characterize a plane graph.

2.1. The planarity of G ∈ G

For the coefficients of the characteristic and permanental polynomials of a graph, an equivalent condition for |ai| = |bi|
is presented in [3], which is described as below.

Lemma 2.1 ([3]). For a graph G and a fixed number i, |ai| = |bi| holds if and only if all the basic figures Ui of G have the same
parity of components.

In this paper we use t and ti to denote positive integers, and use s and si to denote non-negative integers. The intersection
conditionmeans that if C4ti+1 intersects C4tj+1 (resp. C4ti+3 intersects C4tj+3) along a path l1, then l1 is of even length; if C4ti+2
intersects C4tj+1 (resp. C4ti+2 intersects C4sj+3) along a path l2, then l2 is of odd length; if C4ti+2 intersects C4tj+2 along a path
l3, then l3 is of odd length.

By Lemma 2.1, we can get the following technical lemma.

Lemma 2.2. Let G be a connected graph in G . Then it holds that
(i) G contains no subgraph that is isomorphic to C4t ;
(ii) G contains no subgraph that is the disjoint union of C4ti+1 and C4tj+1 or the disjoint union of C4si+3 and C4sj+3;
(iii) G contains no subgraph that has two cycles one of length 4t + 1 and the other of length 4s + 3;
(iv) the cycles in G satisfy the intersection condition.

Proof. To prove (i), suppose to the contrary that G contains a cycle C4t . We consider the two basic figures U1
4t = C4t and U2

4t
the union of 2t independent edges. Both U1

4t and U2
4t are basic figures on 4t vertices. However, U1

4t has one component and
U2
4t has 2t components. By Lemma 2.1, we have |a4t | ≠ |b4t |. This contradicts G ∈ G . Thus (i) holds.
Suppose to the contrary that there are two disjoint cycles C4ti+1 and C4tj+1 (resp. C4si+3 and C4sj+3) in G. Let the basic

figure U1
4(ti+tj)+2 (resp. U1

4(si+sj+1)+2) be two the cycles C4ti+1 and C4tj+1 (resp. C4si+3 and C4sj+3), and let the basic figure
U2
4(ti+tj)+2 (resp. U2

4(si+sj+1)+2) be a matching with 2(ti + tj) + 1 (resp. 2(si + sj + 1) + 1) edges. We can see that U1
4(ti+tj)+2

(resp.U1
4(si+sj+1)+2) has 2 components andU2

4(ti+tj)+2 (resp.U
2
4(si+sj+1)+2) has 2(ti+tj)+1 (resp. 2(si+sj+1)+1) components.

This contradicts Lemma 2.1. Thus (ii) is proved.
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