Graphs whose characteristic and permanental polynomials have coefficients of the same magnitude

Wei Li

Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China

ARTICLE INFO

Article history:

Received 13 April 2014
Received in revised form 27 February 2016
Accepted 29 February 2016
Available online 26 April 2016

Keywords:

Permanental polynomial
Characteristic polynomial
Plane ear decomposition

Abstract

Let $\phi(G, x)=\sum_{i=0}^{n} a_{i} x^{n-i}$ and $\pi(G, x)=\sum_{i=0}^{n} b_{i} x^{n-i}$ denote the characteristic polynomial and permanental polynomial of a graph G. In this paper, we consider the family \mathscr{G} of graphs that have corresponding coefficients of the same magnitude, i.e., $\left|a_{i}\right|=\left|b_{i}\right|$ for $i=0,1, \ldots, n$. We prove that the graphs in this family are planar graphs. To characterize the structures of the considered graphs, we introduce the plane ear decomposition. With the help of the plane ear decomposition, we show the characterizations of the bipartite and non-bipartite graphs in this family.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The graphs considered here are finite and simple with no loops and multiple edges. For a graph G, its vertex set is denoted by $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A(G)$ of G is $\left(a_{i j}\right)_{n \times n}$, where $a_{i j}=1$ if there is an edge between v_{i} and v_{j} and $a_{i j}=0$ otherwise. The characteristic polynomial of G is

$$
\phi(G, x)=\operatorname{det}(x I-A(G))=\sum_{i=0}^{n} a_{i} x^{n-i}
$$

where I is the $n \times n$ identity matrix. If two graphs have the same characteristic polynomial, then they are said to be cospectral. It is known that there are many cospectral graphs [5,9,11,17].

The permanental polynomial of G by definition is

$$
\pi(G, x)=\operatorname{per}(x I-A(G))=\sum_{i=0}^{n} b_{i} x^{n-i}
$$

where $\operatorname{per}(\cdot)$ denotes the permanent of a matrix.
To the best of our knowledge, the permanental polynomials were first introduced to differentiate cospectral graphs $[13,14]$. Later, the theory of permanental polynomials attracted much attention of chemical graph-theoreticians. The permanental polynomials of fullerenes and conjugated molecules were investigated in [6,12]. This study revealed that the coefficients and zeros of the permanental polynomial are related to the structure of molecules. For certain chemical graphs, the relations between the coefficients of the characteristic and permanental polynomials were discussed [7,10]. For general graphs, the coefficients of the characteristic and permanental polynomials were proved to be expressed by the structure of subgraphs [8,13].

[^0]Let U_{i} denote the basic figure of a graph G, which is a subgraph on i vertices such that each component is a cycle or a single edge. Let $p\left(U_{i}\right)$ be the number of components of U_{i} and $c\left(U_{i}\right)$ the number of cycles of U_{i}. The coefficients of the characteristic and permanental polynomials are

$$
\begin{equation*}
a_{i}=\sum_{U_{i} \subset G}(-1)^{p\left(U_{i}\right)} 2^{c\left(U_{i}\right)}, \quad \text { for } 1 \leq i \leq n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=(-1)^{i} \sum_{U_{i} \subset G} 2^{c\left(U_{i}\right)}, \quad \text { for } 1 \leq i \leq n, \tag{2}
\end{equation*}
$$

where the summation ranges over all basic figures U_{i} of G. In particular, $a_{0}=b_{0}=1$.
Due to the fundamental formulae (1) and (2), it is proved that the coefficients of the characteristic and permanental polynomials of a tree have the same magnitude [4], i.e., $\left|a_{i}\right|=\left|b_{i}\right|$ for each i. As a generalization of this result, we shall consider further which types of graphs, in addition to trees, enjoy this property. For convenience, let \mathscr{G} denote the family of graphs G with $\left|a_{i}\right|=\left|b_{i}\right|$ for each i. We will characterize the structure of graphs in \mathscr{G} in this paper.

Throughout this paper, we use $|C|$ and $|P|$ to denote the lengths of a cycle C and a path P. Particularly, C_{n} denotes a cycle of length n. The symmetric difference $C_{i} \Delta C_{j}$ of two cycles C_{i} and C_{j} contains only the edges that are in exactly one of C_{i} or C_{j}.

An ear of a graph G is a path that is maximal with respect to internal vertices of degree 2 in G and is contained in a cycle of G. An ear decomposition of G is a decomposition (C, P_{1}, \ldots, P_{r}) such that C is a cycle and P_{i} for $i \geq 1$ is an ear of $C \cup P_{1} \cup \cdots \cup P_{i}$, denoted as $G=C+P_{1}+P_{2}+\cdots+P_{r}$. It was shown in [15] that "a graph G is 2-connected if and only if G has an ear decomposition starting with any cycle of $G^{\prime \prime}$. Moreover, the end-vertices of each ear in this ear decomposition are different. In the following sections, the graphs in \mathscr{G} will be characterized in terms of ear decompositions.

The rest of the paper is organized as follows: In Section 2, we show that the graphs in \mathscr{G} are planar, and then introduce the plane ear decomposition to construct a plane graph. In Section 3, we present a sufficient and necessary condition for the bipartite graphs in \mathscr{G}. Moreover, we give a structure characterization of the 2-connected bipartite graphs in \mathscr{G}. In Section 4, after deriving the properties of the non-bipartite graphs in \mathscr{G}, we characterize the structure of such graphs.

2. The planarity of graphs belonging to \mathscr{G}

To investigate the graphs in \mathscr{G}, we test the planarity of these graphs, and construct the plane ear decomposition to characterize a plane graph.

2.1. The planarity of $G \in \mathscr{G}$

For the coefficients of the characteristic and permanental polynomials of a graph, an equivalent condition for $\left|a_{i}\right|=\left|b_{i}\right|$ is presented in [3], which is described as below.

Lemma 2.1 ([3]). For a graph G and a fixed number $i,\left|a_{i}\right|=\left|b_{i}\right|$ holds if and only if all the basic figures U_{i} of G have the same parity of components.

In this paper we use t and t_{i} to denote positive integers, and use s and s_{i} to denote non-negative integers. The intersection condition means that if $C_{4 t_{i}+1}$ intersects $C_{4 t_{j}+1}$ (resp. $C_{4 t_{i}+3}$ intersects $C_{4 t_{j}+3}$) along a path l_{1}, then l_{1} is of even length; if $C_{4 t_{i}+2}$ intersects $C_{4 t_{j}+1}$ (resp. $C_{4 t_{i}+2}$ intersects $C_{4 s_{j}+3}$) along a path l_{2}, then l_{2} is of odd length; if $C_{4 t_{i}+2}$ intersects $C_{4 t_{j}+2}$ along a path l_{3}, then l_{3} is of odd length.

By Lemma 2.1, we can get the following technical lemma.
Lemma 2.2. Let G be a connected graph in \mathscr{G}. Then it holds that
(i) G contains no subgraph that is isomorphic to $C_{4 t}$;
(ii) G contains no subgraph that is the disjoint union of $C_{4 t_{i}+1}$ and $C_{4 t_{j}+1}$ or the disjoint union of $C_{4 s_{i}+3}$ and $C_{4 s_{j}+3}$;
(iii) G contains no subgraph that has two cycles one of length $4 t+1$ and the other of length $4 s+3$;
(iv) the cycles in G satisfy the intersection condition.

Proof. To prove (i), suppose to the contrary that G contains a cycle $C_{4 t}$. We consider the two basic figures $U_{4 t}^{1}=C_{4 t}$ and $U_{4 t}^{2}$ the union of $2 t$ independent edges. Both $U_{4 t}^{1}$ and $U_{4 t}^{2}$ are basic figures on $4 t$ vertices. However, $U_{4 t}^{1}$ has one component and $U_{4 t}^{2}$ has $2 t$ components. By Lemma 2.1, we have $\left|a_{4 t}\right| \neq\left|b_{4 t}\right|$. This contradicts $G \in \mathscr{G}$. Thus (i) holds.

Suppose to the contrary that there are two disjoint cycles $C_{4 t_{i}+1}$ and $C_{4 t_{j}+1}$ (resp. $C_{4 s_{i}+3}$ and $C_{4 s_{j}+3}$) in G. Let the basic figure $U_{4\left(t_{i}+t_{j}\right)+2}^{1}\left(\right.$ resp. $\left.U_{4\left(s_{i}+s_{j}+1\right)+2}^{1}\right)$ be two the cycles $C_{4 t_{i}+1}$ and $C_{4 t_{j}+1}$ (resp. $C_{4 s_{i}+3}$ and $C_{4 s_{j}+3}$), and let the basic figure $U_{4\left(t_{i}+t_{j}\right)+2}^{2}$ (resp. $\left.U_{4\left(s_{i}+s_{j}+1\right)+2}^{2}\right)$ be a matching with $2\left(t_{i}+t_{j}\right)+1$ (resp. $\left.2\left(s_{i}+s_{j}+1\right)+1\right)$ edges. We can see that $U_{4\left(t_{i}+t_{j}\right)+2}^{1}$ (resp. $\left.U_{4\left(s_{i}+s_{j}+1\right)+2}^{1}\right)$ has 2 components and $U_{4\left(t_{i}+t_{j}\right)+2}^{2}\left(\right.$ resp. $\left.U_{4\left(s_{i}+s_{j}+1\right)+2}^{2}\right)$ has $2\left(t_{i}+t_{j}\right)+1$ (resp. $\left.2\left(s_{i}+s_{j}+1\right)+1\right)$ components. This contradicts Lemma 2.1. Thus (ii) is proved.

https://daneshyari.com/en/article/4646995

Download Persian Version:

https://daneshyari.com/article/4646995

Daneshyari.com

[^0]: E-mail address: liw@nwpu.edu.cn.

