Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note A generalization of a cyclotomic family of partial difference sets given by Fernández-Alcober, Kwashira and Martínez

ABSTRACT

due to Ott (2015).

Udo Ott

TU Braunschweig Institute for Algebra and Discrete Mathematics, Pockelsstrasse 14, D-38106 Braunschweig, Germany

ARTICLE INFO

Article history: Received 12 November 2015 Received in revised form 29 February 2016 Accepted 5 March 2016 Available online 26 April 2016

Keywords: Partial difference set Strongly regular graph Cyclotomy Jacobi sum

1. Introduction

For all notions concerning partial difference sets we refer to Ma [9]. A partial difference set is simple to define. A subset Δ of a finite group *G* with the property such that

In this paper we present a new cyclotomic family of partial difference sets, which includes a

family presented in Fernández-Alcober et al. (2010). The argument rests on a general proce-

dure for constructing cyclotomic difference sets or partial difference sets in Galois domains

 $1 \notin \Delta$ and $\Delta^{[-1]} = \{x^{-1} \mid x \in \Delta\} = \Delta$

is said to be a partial difference set of G, if for some fixed natural numbers λ and μ , every element $g \neq 1$ of G admits exactly λ resp. μ representations of the form

$$g = xy^{-1}, (x, y) \in \Delta \times \Delta,$$

if $g \in \Delta$ resp. $g \notin \Delta$. If Δ is a partial difference set in G, the group G becomes a strongly regular graph by introducing the adjacency relation $a \sim b \Leftrightarrow ab^{-1} \in \Delta$. But we remark that we allow $\mu = 0$, in contrast to some definitions in literature.

We shall construct a new family of cyclotomic partial difference sets, which includes the family of Fernández-Alcober, Kwashira and Martínez given in [7], Proposition 4.3.

Let K_1 , K_2 be finite fields with q_1 , q_2 elements. We ask for criteria which will guarantee that a particular subgroup U of K_1^* resp. $K_1^* \times K_2^*$ yields a partial difference set of the form

$$\Delta = U$$
 resp. $\Delta = K_1^* \cup U$

in

 $\mathbb{D} = K_1$ resp. $\mathbb{D} = K_1 \oplus K_2$,

where we identify K_1^* with $K_1^* \times \{0\}$, if necessary.

© 2016 Elsevier B.V. All rights reserved.

E-mail address: Udo.Ott@tu-bs.de.

http://dx.doi.org/10.1016/j.disc.2016.03.002 0012-365X/© 2016 Elsevier B.V. All rights reserved.

Our main argument for constructing cyclotomic partial difference sets is based on a general procedure due to Ott [10], Theorems 14 and 20. But in this paper we need only the following simpler version of these theorems:

Theorem 1. Let χ be a character of K_1^* having order $1 < d < q_1 - 1$ such that $\chi(-1) = 1$. Then the kernel $U = \ker \chi$ is a partial difference set of K_1 with parameters λ , μ , if and only if

$$d(\mu - \lambda) = \sum_{j=0}^{a-1} J(\chi^i, \chi^j)$$

for all $1 \leq i \leq d - 1$.

Here $J(\chi^i, \chi^j)$ denotes the Jacobi sum of χ^i and χ^j . Definitions and results on Jacobi sums can be found for instance in Berndt, Evans, Williams web or Lemmermeyer [8]. But it is important to remark that our definition of a Jacobi sum rests on [8], which differs in a sign from the definition given in [3].

Theorem 2. Let $\chi = \chi_1 \chi_2$ be a character of $K_1^* \times K_2^*$, such that both χ_1 and χ_2 have order $1 < d < q_1 - 1, q_2 - 1$ and $\chi(-1) = 1$. Then $K_1^* \cup \ker \chi$ is a partial difference set of $K_1 \oplus K_2$ with parameters

$$v = q_1 q_2, \quad k = \frac{(q_1 - 1)(q_2 - 1)}{d} + q_1 - 1, \quad \lambda = \mu_1 + q_1 - 2, \quad \mu = \lambda_1 + 2r \frac{q_1 - 1}{d},$$

where

$$\mu_1 = \frac{q_2 - 1}{d} \left(\frac{q_1 - 1}{d} - 1 \right)$$
 and $\lambda_1 = \frac{q_1 - 1}{d} \left(\frac{q_2 - 1}{d} - 1 \right)$,

if and only if

$$d(\lambda - \mu + 2) = d\left(q_1 - \frac{q_1 + q_2 - 2}{d}\right) = \sum_{j=0}^{d-1} J(\chi^i, \chi^j)$$

for all $1 \leq i \leq d - 1$.

Here

$$J(\chi^i, \chi^j) = J(\chi^i_1, \chi^j_1) J(\chi^i_2, \chi^j_2)$$

is the product of (classical) Jacobi sums.

Now let *K* be a finite field with *q* elements and let K_0 be a proper subfield of *K* with q_0 elements. Clearly, *K* is the intersection of

 $K_1 = \mathbb{F}_{q^a}$ and $K_2 = \mathbb{F}_{q^{a+1}}, \quad a \ge 1.$

The construction of *U* is based on the fact that $q^a - 1$, $q^{a+1} - 1 \equiv 0 \pmod{q-1}$. Our result is the following:

Theorem 3. Choose a multiplicative character ξ of the field K of order $d = (q - 1)/(q_0 - 1)$ and let χ_1, χ_2 be the lifts of ξ^{-1} , ξ to K_1, K_2 , respectively. Set $\chi = \chi_1 \chi_2$ and let

$$U = U(\chi) = \ker \chi = \{(x, y) \mid x, y \neq 0, \ \chi_1(x)\chi_2(y) = 1\}.$$

Then

 $\Delta = K_1^{\star} \cup U$

is a partial difference set with parameters

$$v = q^{2a+1}, \quad k = \frac{(q^a - 1)(q - q_0 + q^{a+1}(q_0 - 1))}{q - 1}$$
$$\lambda = q^a - \frac{(q_0 - 1)(q^{a+1} - 1)(-(q_0 - 1)q^a + q + q_0 - 2)}{(q - 1)^2} - 2, \quad \mu = \frac{k}{d}$$

2. Proof of the theorem

We preserve the notation introduced in above section. Furthermore, set

 $\mathcal{H} = \langle \chi \rangle.$

Download English Version:

https://daneshyari.com/en/article/4646998

Download Persian Version:

https://daneshyari.com/article/4646998

Daneshyari.com