Note

A generalization of a cyclotomic family of partial difference sets given by Fernández-Alcober, Kwashira and Martínez

Udo Ott

TU Braunschweig Institute for Algebra and Discrete Mathematics, Pockelsstrasse 14, D-38106 Braunschweig, Germany

ARTICLE INFO

Article history:

Received 12 November 2015
Received in revised form 29 February 2016
Accepted 5 March 2016
Available online 26 April 2016

Keywords:

Partial difference set
Strongly regular graph
Cyclotomy
Jacobi sum

Abstract

In this paper we present a new cyclotomic family of partial difference sets, which includes a family presented in Fernández-Alcober et al. (2010). The argument rests on a general procedure for constructing cyclotomic difference sets or partial difference sets in Galois domains due to Ott (2015).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For all notions concerning partial difference sets we refer to Ma [9]. A partial difference set is simple to define. A subset Δ of a finite group G with the property such that

$$
1 \notin \Delta \quad \text { and } \quad \Delta^{[-1]}=\left\{x^{-1} \mid x \in \Delta\right\}=\Delta
$$

is said to be a partial difference set of G, if for some fixed natural numbers λ and μ, every element $g \neq 1$ of G admits exactly λ resp. μ representations of the form

$$
g=x y^{-1}, \quad(x, y) \in \Delta \times \Delta
$$

if $g \in \Delta$ resp. $g \notin \Delta$. If Δ is a partial difference set in G, the group G becomes a strongly regular graph by introducing the adjacency relation $a \sim b \Leftrightarrow a b^{-1} \in \Delta$. But we remark that we allow $\mu=0$, in contrast to some definitions in literature.

We shall construct a new family of cyclotomic partial difference sets, which includes the family of Fernández-Alcober, Kwashira and Martínez given in [7], Proposition 4.3.

Let K_{1}, K_{2} be finite fields with q_{1}, q_{2} elements. We ask for criteria which will guarantee that a particular subgroup U of K_{1}^{\star} resp. $K_{1}^{\star} \times K_{2}^{\star}$ yields a partial difference set of the form

$$
\Delta=U \text { resp. } \Delta=K_{1}^{\star} \cup U
$$

in

$$
\mathbb{D}=K_{1} \text { resp. } \mathbb{D}=K_{1} \oplus K_{2},
$$

where we identify K_{1}^{\star} with $K_{1}^{\star} \times\{0\}$, if necessary.

[^0]Our main argument for constructing cyclotomic partial difference sets is based on a general procedure due to Ott [10], Theorems 14 and 20. But in this paper we need only the following simpler version of these theorems:

Theorem 1. Let χ be a character of K_{1}^{\star} having order $1<d<q_{1}-1$ such that $\chi(-1)=1$. Then the kernel $U=$ ker χ is a partial difference set of K_{1} with parameters λ, μ, if and only if

$$
d(\mu-\lambda)=\sum_{j=0}^{d-1} J\left(\chi^{i}, \chi^{j}\right)
$$

for all $1 \leq i \leq d-1$.
Here $J\left(\chi^{i}, \chi^{j}\right)$ denotes the Jacobi sum of χ^{i} and χ^{j}. Definitions and results on Jacobi sums can be found for instance in Berndt, Evans, Williams web or Lemmermeyer [8]. But it is important to remark that our definition of a Jacobi sum rests on [8], which differs in a sign from the definition given in [3].

Theorem 2. Let $\chi=\chi_{1} \chi_{2}$ be a character of $K_{1}^{\star} \times K_{2}^{\star}$, such that both χ_{1} and χ_{2} have order $1<d<q_{1}-1$, $q_{2}-1$ and $\chi(-1)=1$. Then $K_{1}^{\star} \cup \operatorname{ker} \chi$ is a partial difference set of $K_{1} \oplus K_{2}$ with parameters

$$
v=q_{1} q_{2}, \quad k=\frac{\left(q_{1}-1\right)\left(q_{2}-1\right)}{d}+q_{1}-1, \quad \lambda=\mu_{1}+q_{1}-2, \quad \mu=\lambda_{1}+2 r \frac{q_{1}-1}{d}
$$

where

$$
\mu_{1}=\frac{q_{2}-1}{d}\left(\frac{q_{1}-1}{d}-1\right) \quad \text { and } \quad \lambda_{1}=\frac{q_{1}-1}{d}\left(\frac{q_{2}-1}{d}-1\right)
$$

if and only if

$$
d(\lambda-\mu+2)=d\left(q_{1}-\frac{q_{1}+q_{2}-2}{d}\right)=\sum_{j=0}^{d-1} J\left(\chi^{i}, \chi^{j}\right)
$$

for all $1 \leq i \leq d-1$.
Here

$$
J\left(\chi^{i}, \chi^{j}\right)=J\left(\chi_{1}^{i}, \chi_{1}^{j}\right) J\left(\chi_{2}^{i}, \chi_{2}^{j}\right)
$$

is the product of (classical) Jacobi sums.
Now let K be a finite field with q elements and let K_{0} be a proper subfield of K with q_{0} elements. Clearly, K is the intersection of

$$
K_{1}=\mathbb{F}_{q^{a}} \text { and } K_{2}=\mathbb{F}_{q^{a+1}}, \quad a \geq 1
$$

The construction of U is based on the fact that $q^{a}-1, q^{a+1}-1 \equiv 0(\bmod q-1)$. Our result is the following:
Theorem 3. Choose a multiplicative character ξ of the field K of order $d=(q-1) /\left(q_{0}-1\right)$ and let χ_{1}, χ_{2} be the lifts of ξ^{-1}, ξ to K_{1}, K_{2}, respectively. Set $\chi=\chi_{1} \chi_{2}$ and let

$$
U=U(\chi)=\operatorname{ker} \chi=\left\{(x, y) \mid x, y \neq 0, \chi_{1}(x) \chi_{2}(y)=1\right\}
$$

Then

$$
\Delta=K_{1}^{\star} \cup U
$$

is a partial difference set with parameters

$$
\begin{aligned}
& v=q^{2 a+1}, \quad k=\frac{\left(q^{a}-1\right)\left(q-q_{0}+q^{a+1}\left(q_{0}-1\right)\right)}{q-1} \\
& \lambda=q^{a}-\frac{\left(q_{0}-1\right)\left(q^{a+1}-1\right)\left(-\left(q_{0}-1\right) q^{a}+q+q_{0}-2\right)}{(q-1)^{2}}-2, \quad \mu=\frac{k}{d}
\end{aligned}
$$

2. Proof of the theorem

We preserve the notation introduced in above section. Furthermore, set

$$
\mathscr{H}=\langle\chi\rangle .
$$

https://daneshyari.com/en/article/4646998

Download Persian Version:

https://daneshyari.com/article/4646998

Daneshyari.com

[^0]: E-mail address: Udo.Ott@tu-bs.de

