On endomorphisms of alternating forms graph

Li-Ping Huang*, Jin-Qian Huang, Kang Zhao
School of Mathematics, Changsha University of Science and Technology, Changsha, 410004, PR China

ARTICLE INFO

Article history:

Received 8 January 2014
Received in revised form 15 October 2014
Accepted 17 October 2014
Available online 22 November 2014

Keywords:

Alternating forms graph
Endomorphism
Core
Pseudo-core
Maximum clique

Abstract

A graph G is a pseudo-core if every endomorphism of G is either an automorphism or a colouring. Let \mathbb{F}_{q} be the finite field with q elements and let $\operatorname{Alt}(m, q)(m \geq 4)$ be the alternating forms graph on the vector space \mathbb{F}_{q}^{m}. We prove that $\operatorname{Alt}(m, q)$ is a pseudo-core. Moreover, if m is odd, then $\operatorname{Alt}(m, q)$ is a core. If both m and q are even, then $\operatorname{Alt}(m, q)$ is not a core.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all graphs are simple [6] and finite. Let \mathbb{F}_{q} be the finite field with q elements where q is a power of a prime, and let $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$. Denote by $\mathbb{F}_{q}^{m \times n}$ the set of $m \times n$ matrices over \mathbb{F}_{q} and $\mathbb{F}_{q}^{m}=\mathbb{F}_{q}^{1 \times m}$. Let $|X|$ be the cardinal number of a set X. In a graph G, the distance $d(x, y)$ between vertices x and y is the number of edges of a shortest path from x to y. We write $x \sim y$ (resp. $x \nsim y$) if vertices x and y are adjacent (resp. nonadjacent). Let $V(G)$ be the vertex set of a graph G.

Assume that G, H are graphs and $\varphi: V(G) \rightarrow V(H)$ is a map. If $\varphi(x) \sim \varphi(y)$ whenever $x \sim y$, then φ is called a homomorphism. If φ is bijective and $x \sim y \Leftrightarrow \varphi(x) \sim \varphi(y)$, then φ is an isomorphism. A homomorphism (resp. isomorphism) from G to itself is called an endomorphism (resp. automorphism) of G. If H is the complete graph K_{r}, then φ is called a r colouring (colouring for short) of G. The chromatic number $\chi(G)$ of G is the least value k for which G can be k-coloured.

Recall that a clique of a graph G is a subgraph of G that is complete; a maximal clique of G is a clique C of G such that there is no clique of G which properly contains C as a subset; a maximum clique of G is a clique of G which has maximum cardinality. The clique number $\omega(G)$ of a graph G is the number of vertices in a maximum clique. In the language of geometry of matrices [20,9,11], we use the term maximal set to indicate a maximal clique.

A graph G is a core [6] if every endomorphism of G is an automorphism. A subgraph Γ of a graph G is a core of G [6] if it is a core and there exists some homomorphism from G to Γ. A graph G is called core-complete [7] if it is a core or its core is complete.

A graph G is called a pseudo-core if every endomorphism of G is either an automorphism or a colouring. It is easy to see that a graph G is a pseudo-core if and only if every endomorphism of G is either an automorphism or its range is a maximum clique. Thus, if a graph G is a pseudo-core but not a core, then there is an endomorphism of G such that its range is a maximum clique. Every core is a pseudo-core. Every pseudo-core is core-complete but not vice versa.

[^0]For a graph G, an independent set of G is a subset of vertices such that no two vertices are adjacent. A largest independent set of G is an independent set of maximum cardinality. The independence number $\alpha(G)$ of G is the number of vertices in a largest independent set of G [6].

For an $m \times m(m \geq 2)$ matrix A over \mathbb{F}_{q}, let ${ }^{t} A$ be the transpose matrix of A. If ${ }^{t} A=-A$ with zero diagonal elements, then A is called an alternate matrix. A is an $m \times m$ alternate matrix if and only if $x A^{t} x=0$ for all $x \in \mathbb{F}_{q}^{m}$ (cf. [20, p.39]). If q is odd, then A is alternate if and only if A is skew-symmetric (or $A=-{ }^{t} A$). However, if q is even, then a skew-symmetric matrix may not be alternate because $a=-a$ for all $a \in \mathbb{F}_{q}^{*}$. The rank of any alternate matrix is even (cf. [20, Proposition 1.34] or [22, Theorem 11.11]).

Let $\mathcal{K}_{m}\left(\mathbb{F}_{q}\right)\left(\mathcal{K}_{m}\right.$ for short $)$ be the set of $m \times m(m \geq 2)$ alternate matrices over \mathbb{F}_{q}. The alternating forms graph $\operatorname{Alt}(m, q)$ has the vertex set $\mathcal{K}_{m}\left(\mathbb{F}_{q}\right)$, and two vertices A and B are adjacent if $\operatorname{rank}(A-B)=2$. By [2, Theorem 9.5.3], every alternating forms graph is distance-transitive. By the geometry of alternate matrices (cf. [20, Prop. 4.5] or below formula (1)), every alternating forms graph is connected. By [7, Corollary 4.2], any alternating forms graph is core-complete. The alternating forms graph plays an important role in geometry, graph theory, group theory, association schemes and coding theory [21,20,23,11].

Recently, literatures $[15,14,10]$ characterized the endomorphisms for symmetric bilinear forms graphs, hermitian forms graphs and bilinear forms graphs over a finite field, respectively. However, the characterization of the endomorphisms of Alt (m, q) remains open. The main result of this paper is as follows.

Theorem 1.1. Let m be an integer ≥ 4, and let $G=\operatorname{Alt}(m, q)$. Then G is a pseudo-core. Moreover, if m is odd, then G is a core. If m is even, then G is not a core if and only if its independence number is $q^{(m-1)(m-2) / 2}$. In particular, if both m and q are even, then G is not a core.

The paper is organized as follows. In Section 2, we characterize maximal (maximum) cliques. In Section 3, we discuss the core, independence number and chromatic number of $\operatorname{Alt}(m, q)$. In Section 4, we prove that if an endomorphism φ of $\operatorname{Alt}(m, q)$ maps two distinct type one maximal cliques (their intersection is nonempty) onto a maximum clique, then $\operatorname{Im}(\varphi)$ is a maximum clique. Finally, we will prove Theorem 1.1.

2. Maximal cliques and maximum cliques of $\operatorname{Alt}(\boldsymbol{m}, q)$

In order to prove Theorem 1.1, we need to discuss properties of maximal cliques and maximum cliques of $\operatorname{Alt}(m, q)$.
Recall that every alternate matrix has even rank. If $m=2,3$, then $\operatorname{rank}(A-B)=2$ for any two distinct $A, B \in \mathcal{K}_{m}$; thus $\operatorname{Alt}(m, q)$ is a clique and it is a core. From now on, we always assume $m \geq 4$ for $G=\operatorname{Alt}(m, q)$ in our discussion unless specified otherwise.

In $\operatorname{Alt}(m, q)$, it is well-known that (cf. [20, Prop. 4.5])

$$
\begin{equation*}
d(A, B)=\frac{1}{2} \operatorname{rank}(A-B), \quad A, B \in \mathcal{K}_{m} \tag{1}
\end{equation*}
$$

Denote by $G L_{n}\left(\mathbb{F}_{q}\right)$ the set of all $n \times n$ invertible matrices over \mathbb{F}_{q}. Let $E_{i j}^{n \times n}$ ($E_{i j}$ for short) be the $n \times n$ matrix whose (i, j)-entry is 1 and all other entries are 0 's, and let $D_{i j}=E_{i j}-E_{j i}$ where $i \neq j$. Let I_{r} be the $r \times r$ identity matrix. Denote by $0_{m, n}$ the $m \times n$ zero matrix (0 for short), and $0_{n}=0_{n, n}$. Let $\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right.$) be a block diagonal matrix over \mathbb{F}_{q}. We denote by $\mathbb{F}_{q} D_{i j}, \mathcal{M}_{i}$ and \mathcal{N}_{j} the subsets of \mathcal{K}_{m} which are defined by $\mathbb{F}_{q} D_{i j}=\left\{x D_{i j}: x \in \mathbb{F}_{q}\right\}$,

$$
\mathcal{M}_{i}=\left\{\sum_{j=1, j \neq i}^{m} x_{j} D_{i j}: x_{j} \in \mathbb{F}_{q}\right\} \quad(i=1, \ldots, m)
$$

and

$$
\mathcal{N}_{j}=\left\{x D_{12}+y D_{1 j}+z D_{2 j}: x, y, z \in \mathbb{F}_{q}\right\} \quad(j=3, \ldots, m)
$$

Two $n \times n$ matrices A and B over \mathbb{F}_{q} are said to be congruent, denoted by $A \approx B$, if there exists a $P \in G L_{n}\left(\mathbb{F}_{q}\right)$ such that ${ }^{t} P A P=B$. For a subset s of \mathcal{K}_{m}, we write ${ }^{t} P s P+A=\left\{{ }^{t} P X P+A: X \in \delta\right\}$, where $A \in \mathcal{K}_{m}$ and $P \in G L_{m}\left(\mathbb{F}_{q}\right)$. Put $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $J^{(r)}=\operatorname{diag}(J, \ldots, J) \in \mathcal{K}_{2 r}$.

Lemma 2.1 ([20, Proposition 1.34] or [22, Theorem 11.11]). If $A \in \mathcal{K}_{m}(m \geq 2)$, then the rank of A is necessarily even. Further, if A is of $\operatorname{rank} 2 r$, then $A \approx \operatorname{diag}\left(J^{(r)}, 0\right)$ and

$$
A \approx\left(\begin{array}{ccc}
0 & I_{r} & 0 \tag{2}\\
-I_{r} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

For convenience, if \mathcal{M} is a maximal clique (maximum clique) of a graph G, then we regard that \mathcal{M} and $V(\mathcal{M})$ are the same.

https://daneshyari.com/en/article/4647083

Download Persian Version:
https://daneshyari.com/article/4647083

Daneshyari.com

[^0]: * Project 11371072 supported by National Natural Science Foundation of China.
 * Corresponding author.

 E-mail addresses: lipingmath@163.com (L.-P. Huang), francis19890601@163.com (J.-Q. Huang), zhaokangmath@126.com (K. Zhao).

