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a b s t r a c t

Let po(n) be the number of overpartitions of n into odd parts. We prove an identity of po(n)
and establish many explicit Ramanujan-like congruences for po(n)modulo 32 and 64.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An overpartition of a positive integer n is a partition of n in which the first occurrence of each part can be overlined. For
example, there are fourteen overpartitions of 4:

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2 2 + 2, 2 + 1 + 1,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

We denote the number of overpartitions of n by p(n). The generating function for p(n) is
∞
n=0

p(n)qn =

∞
n=1

(1 + qn)
(1 − qn)

=

∞
n=1

(1 − q2n)
(1 − qn)2

= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · .

Overpartitions have been extensively studied, and they possess many analogous properties to ordinary partitions, see, for
example, [3,4,7,6,11–14].

In this note, we consider the overpartitions of n into odd parts. We denote by po(n) the number of such partitions. It is
clear that

∞
n=0

po(n)qn =

∞
n=1

1 + q2n+1

1 − q2n+1
=

∞
n=1

(1 − q2n)3

(1 − qn)2(1 − q4n)
= 1 + 2q + 2q2 + 4q3 + · · · .

This generating function has appeared in the works of Ardonne, Kedem, and Stone [1], Bessenrodt [2], Santos and Sills [16].
Recently, arithmetic properties of po(n)were considered byHirschhorn and Sellers [8]. They established several Ramanujan-
like congruences satisfied by po(n) and some easily-stated characterizations of po(n) modulo 4 and 8. For example, they
proved that for all n ≥ 0, α > 0,

po(2α(8n + 5)) ≡ 0 (mod 8),
po(8n + 7) ≡ 0 (mod 16).
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It is a natural question to find explicit congruences for po(n)modulo higher powers of 2. The aim of this note is to establish
some explicit congruences for po(n)modulo 32 and 64. Our main result is Theorem 2 below, which indeed yields infinitely
many Ramanujan-like congruences for po(n).

We first give a new identity of po(n). For brevity we shall use the following notation: for positive integers a, b,

E(a)b :=

∞
n=1

(1 − qan)b.

Theorem 1. We have
∞
n=0

po(16n + 14)qn = 112
E(2)27

E(1)25E(4)2
+ 256q

E(2)3E(4)14

E(1)17
.

Theorem 1 implies po(16n + 14) ≡ 0 (mod 16) clearly. Using elementary theory of modular forms, we can extend this
congruence to modulo 32 and 64.

Theorem 2. Let t ≥ 0 be an integer and p ≡ 1 (mod 8) be a prime. Then for all nonnegative integers n with n ≢ −
7
8 (mod p),

po(16p2t+1n + 16λp,t + 14) ≡ 0 (mod 32),

po(16p4t+3n + 16δp,t + 14) ≡ 0 (mod 64),

where λp,t =
7(p2t+1

−1)
8 and δp,t =

7(p4t+3
−1)

8 . Suppose that p1, p2 ≡ 1 (mod 8) are two distinct primes. Then for all nonnegative
integers n satisfying n ≢ −

7
8 (mod p1) and n ≢ −

7
8 (mod p2),

po(16p1p2n + 16δp1p2 + 14) ≡ 0 (mod 64),

where δp1p2 =
7(p1p2−1)

8 .

Example. To illustrate Theorem 2, we let p = 17. Then λ17,0 = 14, δ17,0 = 4298. Theorem 2 states that

po(272n + 238) ≡ 0 (mod 32),
po(16 · 173n + 68782) ≡ 0 (mod 64)

for all n ≢ 14 (mod 17). Let p1 = 17, p2 = 41. Then δ17,41 = 609, and for all n ≢ 14 (mod 17) and n ≢ 35 (mod 41),

po(16 · 17 · 41n + 9758) ≡ 0 (mod 64).

2. Proof of Theorem 1

We need the following two lemmas.

Lemma 1. Let

φ(q) :=

∞
n=−∞

qn
2

=
E(2)5

E(1)2E(4)2
,

ψ(q) :=

∞
n=−∞

q2n
2
−n

=
E(2)2

E(1)
.

Then

φ(q) = φ(q4)+ 2qψ(q8).

Lemma 2. We have

P(q) =
E(2)
E(1)2

=
E(8)5

E(2)4E(16)2
+ 2q

E(4)2E(16)2

E(2)4E(8)
.

The proof of Lemma 1 is obvious. Lemma 2 is the 2-dissection of P(q)which can be found in Theorem 1 of [7].
Proof of Theorem 1. We observe that

∞
n=0

po(n)qn =
E(2)3

E(1)2E(4)
= φ(q)P(q2).
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