Note

On the number of overpartitions into odd parts

Shi-Chao Chen

Institute of Contemporary Mathematics, Department of Mathematics and Information Sciences, Henan University, Kaifeng, 475001, China

ARTICLE INFO

Article history:

Received 27 August 2013
Received in revised form 7 February 2014
Accepted 19 February 2014
Available online 4 March 2014

Keywords:
Overpartitions
Congruences

Abstract

Let $\overline{p o}(n)$ be the number of overpartitions of n into odd parts. We prove an identity of $\overline{p o}(n)$ and establish many explicit Ramanujan-like congruences for $\overline{p o}(n)$ modulo 32 and 64 .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An overpartition of a positive integer n is a partition of n in which the first occurrence of each part can be overlined. For example, there are fourteen overpartitions of 4 :

$$
\begin{aligned}
& 4, \quad \overline{4}, \quad 3+1, \quad \overline{3}+1, \quad 3+\overline{1}, \quad \overline{3}+\overline{1}, \quad 2+2 \quad \overline{2}+2, \quad 2+1+1, \\
& \overline{2}+1+1, \quad 2+\overline{1}+1, \quad \overline{2}+\overline{1}+1, \quad 1+1+1+1, \quad \overline{1}+1+1+1
\end{aligned}
$$

We denote the number of overpartitions of n by $\bar{p}(n)$. The generating function for $\bar{p}(n)$ is

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\prod_{n=1}^{\infty} \frac{\left(1+q^{n}\right)}{\left(1-q^{n}\right)}=\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)}{\left(1-q^{n}\right)^{2}}=1+2 q+4 q^{2}+8 q^{3}+14 q^{4}+\cdots
$$

Overpartitions have been extensively studied, and they possess many analogous properties to ordinary partitions, see, for example, [3,4,7,6,11-14].

In this note, we consider the overpartitions of n into odd parts. We denote by $\overline{p o}(n)$ the number of such partitions. It is clear that

$$
\sum_{n=0}^{\infty} \overline{p o}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1+q^{2 n+1}}{1-q^{2 n+1}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{2 n}\right)^{3}}{\left(1-q^{n}\right)^{2}\left(1-q^{4 n}\right)}=1+2 q+2 q^{2}+4 q^{3}+\cdots
$$

This generating function has appeared in the works of Ardonne, Kedem, and Stone [1], Bessenrodt [2], Santos and Sills [16]. Recently, arithmetic properties of $\overline{p o}(n)$ were considered by Hirschhorn and Sellers [8]. They established several Ramanujanlike congruences satisfied by $\overline{p o}(n)$ and some easily-stated characterizations of $\overline{p o}(n)$ modulo 4 and 8 . For example, they proved that for all $n \geq 0, \alpha>0$,

$$
\begin{aligned}
& \overline{p o}\left(2^{\alpha}(8 n+5)\right) \equiv 0(\bmod 8), \\
& \overline{p o}(8 n+7) \equiv 0(\bmod 16)
\end{aligned}
$$

[^0]It is a natural question to find explicit congruences for $\overline{\operatorname{po}}(n)$ modulo higher powers of 2 . The aim of this note is to establish some explicit congruences for $\overline{p o}(n)$ modulo 32 and 64 . Our main result is Theorem 2 below, which indeed yields infinitely many Ramanujan-like congruences for $\overline{p o}(n)$.

We first give a new identity of $\overline{p o}(n)$. For brevity we shall use the following notation: for positive integers a, b,

$$
E(a)^{b}:=\prod_{n=1}^{\infty}\left(1-q^{a n}\right)^{b} .
$$

Theorem 1. We have

$$
\sum_{n=0}^{\infty} \overline{p o}(16 n+14) q^{n}=112 \frac{E(2)^{27}}{E(1)^{25} E(4)^{2}}+256 q \frac{E(2)^{3} E(4)^{14}}{E(1)^{17}}
$$

Theorem 1 implies $\overline{p o}(16 n+14) \equiv 0(\bmod 16)$ clearly. Using elementary theory of modular forms, we can extend this congruence to modulo 32 and 64.
Theorem 2. Let $t \geq 0$ be an integer and $p \equiv 1(\bmod 8)$ be a prime. Then for all nonnegative integers n with $n \not \equiv-\frac{7}{8}(\bmod p)$,

$$
\begin{aligned}
& \overline{p o}\left(16 p^{2 t+1} n+16 \lambda_{p, t}+14\right) \equiv 0(\bmod 32), \\
& \overline{p o}\left(16 p^{4 t+3} n+16 \delta_{p, t}+14\right) \equiv 0(\bmod 64),
\end{aligned}
$$

where $\lambda_{p, t}=\frac{7\left(p^{2 t+1}-1\right)}{8}$ and $\delta_{p, t}=\frac{7\left(p^{4 t+3}-1\right)}{8}$. Suppose that $p_{1}, p_{2} \equiv 1(\bmod 8)$ are two distinct primes. Then for all nonnegative integers n satisfying $n \not \equiv-\frac{7}{8}\left(\bmod p_{1}\right)$ and $n \not \equiv-\frac{7}{8}\left(\bmod p_{2}\right)$,

$$
\overline{p o}\left(16 p_{1} p_{2} n+16 \delta_{p_{1} p_{2}}+14\right) \equiv 0(\bmod 64)
$$

where $\delta_{p_{1} p_{2}}=\frac{7\left(p_{1} p_{2}-1\right)}{8}$.
Example. To illustrate Theorem 2, we let $p=17$. Then $\lambda_{17,0}=14, \delta_{17,0}=4298$. Theorem 2 states that
$\overline{p o}(272 n+238) \equiv 0(\bmod 32)$,
$\overline{p o}\left(16 \cdot 17^{3} n+68782\right) \equiv 0(\bmod 64)$
for all $n \not \equiv 14(\bmod 17)$. Let $p_{1}=17, p_{2}=41$. Then $\delta_{17,41}=609$, and for all $n \not \equiv 14(\bmod 17)$ and $n \not \equiv 35(\bmod 41)$,
$\overline{p o}(16 \cdot 17 \cdot 41 n+9758) \equiv 0(\bmod 64)$.

2. Proof of Theorem 1

We need the following two lemmas
Lemma 1. Let

$$
\begin{aligned}
& \phi(q):=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{E(2)^{5}}{E(1)^{2} E(4)^{2}}, \\
& \psi(q):=\sum_{n=-\infty}^{\infty} q^{2 n^{2}-n}=\frac{E(2)^{2}}{E(1)} .
\end{aligned}
$$

Then

$$
\phi(q)=\phi\left(q^{4}\right)+2 q \psi\left(q^{8}\right) .
$$

Lemma 2. We have

$$
\bar{P}(q)=\frac{E(2)}{E(1)^{2}}=\frac{E(8)^{5}}{E(2)^{4} E(16)^{2}}+2 q \frac{E(4)^{2} E(16)^{2}}{E(2)^{4} E(8)} .
$$

The proof of Lemma 1 is obvious. Lemma 2 is the 2-dissection of $\bar{P}(q)$ which can be found in Theorem 1 of [7].
Proof of Theorem 1. We observe that

$$
\sum_{n=0}^{\infty} \overline{p o}(n) q^{n}=\frac{E(2)^{3}}{E(1)^{2} E(4)}=\phi(q) \bar{P}\left(q^{2}\right)
$$

https://daneshyari.com/en/article/4647201

Download Persian Version:

https://daneshyari.com/article/4647201

Daneshyari.com

[^0]: E-mail address: schen@henu.edu.cn.

