Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note On the number of overpartitions into odd parts

Shi-Chao Chen

Institute of Contemporary Mathematics, Department of Mathematics and Information Sciences, Henan University, Kaifeng, 475001, China

ARTICLE INFO

ABSTRACT

Article history: Received 27 August 2013 Received in revised form 7 February 2014 Accepted 19 February 2014 Available online 4 March 2014

Keywords: Overpartitions Congruences

1. Introduction

An overpartition of a positive integer *n* is a partition of *n* in which the first occurrence of each part can be overlined. For example, there are fourteen overpartitions of 4:

Let $\overline{po}(n)$ be the number of overpartitions of *n* into odd parts. We prove an identity of $\overline{po}(n)$

and establish many explicit Ramanujan-like congruences for $\overline{po}(n)$ modulo 32 and 64.

4,
$$\overline{4}$$
, $3+1$, $\overline{3}+1$, $3+\overline{1}$, $\overline{3}+\overline{1}$, $2+2$, $2+2$, $2+1+1$, $\overline{2}+1+1$, $2+\overline{1}+1$, $\overline{2}+\overline{1}+1$, $1+1+1+1$, $\overline{1}+1+1+1$.

We denote the number of overpartitions of *n* by $\overline{p}(n)$. The generating function for $\overline{p}(n)$ is

$$\sum_{n=0}^{\infty} \overline{p}(n)q^n = \prod_{n=1}^{\infty} \frac{(1+q^n)}{(1-q^n)} = \prod_{n=1}^{\infty} \frac{(1-q^{2n})}{(1-q^n)^2} = 1 + 2q + 4q^2 + 8q^3 + 14q^4 + \cdots$$

Overpartitions have been extensively studied, and they possess many analogous properties to ordinary partitions, see, for example, [3,4,7,6,11–14].

In this note, we consider the overpartitions of *n* into odd parts. We denote by $\overline{po}(n)$ the number of such partitions. It is clear that

$$\sum_{n=0}^{\infty} \overline{po}(n)q^n = \prod_{n=1}^{\infty} \frac{1+q^{2n+1}}{1-q^{2n+1}} = \prod_{n=1}^{\infty} \frac{(1-q^{2n})^3}{(1-q^n)^2(1-q^{4n})} = 1 + 2q + 2q^2 + 4q^3 + \cdots$$

This generating function has appeared in the works of Ardonne, Kedem, and Stone [1], Bessenrodt [2], Santos and Sills [16]. Recently, arithmetic properties of $\overline{po}(n)$ were considered by Hirschhorn and Sellers [8]. They established several Ramanujanlike congruences satisfied by $\overline{po}(n)$ and some easily-stated characterizations of $\overline{po}(n)$ modulo 4 and 8. For example, they proved that for all $n \ge 0$, $\alpha > 0$,

 $\overline{po}(2^{\alpha}(8n+5)) \equiv 0 \pmod{8},$ $\overline{po}(8n+7) \equiv 0 \pmod{16}.$

© 2014 Elsevier B.V. All rights reserved.

E-mail address: schen@henu.edu.cn.

http://dx.doi.org/10.1016/j.disc.2014.02.015 0012-365X/© 2014 Elsevier B.V. All rights reserved.

It is a natural question to find explicit congruences for $\overline{po}(n)$ modulo higher powers of 2. The aim of this note is to establish some explicit congruences for $\overline{po}(n)$ modulo 32 and 64. Our main result is Theorem 2 below, which indeed yields infinitely many Ramanujan-like congruences for $\overline{po}(n)$.

We first give a new identity of $\overline{po}(n)$. For brevity we shall use the following notation: for positive integers a, b,

$$E(a)^b := \prod_{n=1}^{\infty} (1-q^{an})^b.$$

Theorem 1. We have

$$\sum_{n=0}^{\infty} \overline{po}(16n+14)q^n = 112 \frac{E(2)^{27}}{E(1)^{25}E(4)^2} + 256q \frac{E(2)^3 E(4)^{14}}{E(1)^{17}}$$

Theorem 1 implies $\overline{po}(16n + 14) \equiv 0 \pmod{16}$ clearly. Using elementary theory of modular forms, we can extend this congruence to modulo 32 and 64.

Theorem 2. Let $t \ge 0$ be an integer and $p \equiv 1 \pmod{8}$ be a prime. Then for all nonnegative integers n with $n \ne -\frac{7}{8} \pmod{p}$,

 $\overline{po}(16p^{2t+1}n + 16\lambda_{p,t} + 14) \equiv 0 \pmod{32},$

 $\overline{po}(16p^{4t+3}n+16\delta_{p,t}+14) \equiv 0 \pmod{64},$

where $\lambda_{p,t} = \frac{7(p^{2t+1}-1)}{8}$ and $\delta_{p,t} = \frac{7(p^{4t+3}-1)}{8}$. Suppose that $p_1, p_2 \equiv 1 \pmod{8}$ are two distinct primes. Then for all nonnegative integers *n* satisfying $n \not\equiv -\frac{7}{8} \pmod{p_1}$ and $n \not\equiv -\frac{7}{8} \pmod{p_2}$,

 $\overline{po}(16p_1p_2n + 16\delta_{p_1p_2} + 14) \equiv 0 \pmod{64},$

where $\delta_{p_1p_2} = \frac{7(p_1p_2-1)}{8}$.

Example. To illustrate Theorem 2, we let p = 17. Then $\lambda_{17,0} = 14$, $\delta_{17,0} = 4298$. Theorem 2 states that

 $\overline{po}(272n + 238) \equiv 0 \pmod{32},$ $\overline{po}(16 \cdot 17^3n + 68782) \equiv 0 \pmod{64}$

for all $n \neq 14 \pmod{17}$. Let $p_1 = 17$, $p_2 = 41$. Then $\delta_{17,41} = 609$, and for all $n \neq 14 \pmod{17}$ and $n \neq 35 \pmod{41}$, $\overline{p0}(16 \cdot 17 \cdot 41n + 9758) \equiv 0 \pmod{64}$.

2. Proof of Theorem 1

We need the following two lemmas.

Lemma 1. Let

$$\begin{split} \phi(q) &\coloneqq \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{E(2)^5}{E(1)^2 E(4)^2}, \\ \psi(q) &\coloneqq \sum_{n=-\infty}^{\infty} q^{2n^2 - n} = \frac{E(2)^2}{E(1)}. \end{split}$$

Then

$$\phi(q) = \phi(q^4) + 2q\psi(q^8)$$

Lemma 2. We have

$$\overline{P}(q) = \frac{E(2)}{E(1)^2} = \frac{E(8)^5}{E(2)^4 E(16)^2} + 2q \frac{E(4)^2 E(16)^2}{E(2)^4 E(8)}$$

The proof of Lemma 1 is obvious. Lemma 2 is the 2-dissection of $\overline{P}(q)$ which can be found in Theorem 1 of [7]. **Proof of Theorem 1.** We observe that

$$\sum_{n=0}^{\infty} \overline{po}(n)q^n = \frac{E(2)^3}{E(1)^2 E(4)} = \phi(q)\overline{P}(q^2).$$

Download English Version:

https://daneshyari.com/en/article/4647201

Download Persian Version:

https://daneshyari.com/article/4647201

Daneshyari.com