Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs

sarah-marie belcastro, Ruth Haas*
Department of Mathematics and Statistics, Smith College, Northampton, MA 01063, USA

ARTICLE INFO

Article history:

Received 3 September 2012
Received in revised form 12 October 2013
Accepted 17 February 2014
Available online 6 March 2014

Keywords:

Edge-coloring
Kempe chains
Coloring graphs
Cubic graphs

Abstract

Two n-edge colorings of a graph are edge-Kempe equivalent if one can be obtained from the other by a series of edge-Kempe switches. In this work we show every planar bipartite cubic graph has exactly one edge-Kempe equivalence class, when $3=\chi^{\prime}(G)$ colors are used. In contrast, we also exhibit infinite families of nonplanar bipartite cubic (and thus 3-edge colorable) graphs with a range of numbers of edge-Kempe equivalence classes when using 3 colors. These results address a question raised by Mohar.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and summary

Back in the frosts of time, Alfred Bray Kempe introduced the notion of changing colorings by switching maximal two-color chains of vertices (for vertex colorings) [4] or edges (for edge colorings). The maximal two-color chains are now called Kempe chains and edge-Kempe chains respectively; switching the colors along such a chain is called a Kempe switch or edge-Kempe switch as appropriate. This process is of interest across the study of colorings. It is also of interest in statistical mechanics, where certain dynamics in the antiferromagnetic q-state Potts model correspond to Kempe switches on vertex colorings [8,9]. In some cases, these dynamics also correspond to edge-Kempe switches [7].

In the present work we are concerned with understanding when two edge-colorings are equivalent under a sequence of edge-Kempe switches without introducing additional colors and when not. We will say that two n-colorings are edge Kempe-equivalent if they are equivalent without introducing additional colors. We allow multiple edges on our (labeled) graphs; loops are prohibited (and will mostly be excluded by other constraints such as 3-edge colorability).

A single edge-Kempe switch is denoted by-. That is, if coloring c_{i} becomes coloring c_{j} after a single edge-Kempe switch, then $c_{i}-c_{j}$. If coloring c_{j} can be converted to coloring c_{k} by a sequence of edge-Kempe switches, then c_{j} and c_{k} are equivalent; we denote this by $c_{j} \sim c_{k}$. Because \sim is an equivalence relation, we may consider the equivalence classes on the set of colorings of a graph G edge-colored with n colors. In this paper we focus on the number of edge-Kempe equivalence classes and denote this quantity by $K^{\prime}(G, n)$. (In other work this has been denoted $\operatorname{Ke}(L(G), n)$ [6] and $\kappa_{E}(G, n)$ [5].)

Note that any global permutation of colors can be achieved by edge-Kempe switches because the symmetric group S_{n} is generated by transpositions. Thus two colorings that differ only by a permutation of colors are edge-Kempe equivalent for any number of colors.

Recall that $\Delta(G)$ is the largest vertex degree in G and that $\chi^{\prime}(G)$ is the smallest number of colors needed to properly edge-color G. Mohar has shown that when more colors are used than possibly needed to edge-color the graph, then

[^0]

Fig. 1. Decomposing a graph over a 3-edge cut.
there is but a single edge-Kempe equivalence class, i.e., when $n>\chi^{\prime}(G)+1$ then $K^{\prime}(G, n)=1[6$, Theorem 3.1]. More is known if $\Delta(G)$ is restricted; when $\Delta(G) \leq 4, K^{\prime}(G, \Delta(G)+2)=1$ [5, Theorem 2] and when $\Delta(G) \leq$ $3, K^{\prime}(G, \Delta(G)+1)=1\left[5\right.$, Theorem 3]. For bipartite graphs there is a stronger result: when $n>\Delta(G), K^{\prime}(G, n)=1$ [6, Theorem 3.3]. Little is known about $K^{\prime}(G, \Delta(G))$ except that there are cases in which $K^{\prime}(G, \Delta(G))>1$.

In this paper we focus on 3-edge colorable cubic graphs, and examine $K^{\prime}\left(G, \chi^{\prime}(G)\right)=K^{\prime}(G, 3)$. Mohar suggested classifying cubic bipartite graphs with $K^{\prime}(G, 3)=1$ [6]; we provide a partial answer here. Mohar also points out in [6] that it follows from a result of Fisk in [2] that every planar 3-connected cubic bipartite graph G has $K^{\prime}(G, 3)=1$. We show (in Section 4) that for G planar, bipartite and cubic, G has $K^{\prime}(G, 3)=1$.

The remainder of the paper proceeds as follows. Section 2 introduces a decomposition of cubic graphs along 3-edge cuts that preserve planarity and bipartiteness. The theorems in Section 3 use this edge-cut decomposition to combine and decompose 3-edge colorings. We also show that any edge-Kempe equivalence can avoid color changes at a particular vertex. Then, in Section 4 we compute $K^{\prime}(G, 3)$ in terms of the edge-cut decomposition of G, and exhibit infinite families of simple nonplanar bipartite cubic graphs with a range of numbers of edge-Kempe equivalence classes.

2. Decompositions of cubic graphs

Any 3-edge cut of a cubic graph may be used to decompose a cubic graph G into two cubic graphs G_{1}, G_{2} as follows. For 3-edge cut $E_{C}=\left\{\left(s_{11} s_{21}\right),\left(s_{12} s_{22}\right),\left(s_{13} s_{23}\right)\right\}$ where vertices $s_{1 j}$ are on one side of the cut and $s_{2 j}$ on the other, let the induced subgraphs of $G \backslash E_{C}$ separated by E_{C} be $G_{1}^{\prime}, G_{2}^{\prime}$. Then for $i=1$, 2 define G_{i} by $V\left(G_{i}\right)=V\left(G_{i}^{\prime}\right) \cup v_{i}$ and $E\left(G_{i}\right)=E\left(G_{i}^{\prime}\right) \cup E_{C_{i}}$ where $E_{C_{i}}=\left\{\left(v_{i} s_{i j}\right) \mid j=1,2,3\right\}$, as is shown in Fig. 1. Note that if $s_{i j}=s_{i k}$ then G_{i} will contain a multiple edge. This decomposition will be written as $G=G_{1} \curlyvee G_{2}$.

We say the edge cut is nontrivial if both G_{1} and G_{2} have fewer vertices than G. Using nontrivial edge cuts, we may decompose a cubic graph G into a set of smaller graphs $\left\{G_{i}\right\}$ where each G_{i} has no nontrivial edge cuts (but may have additional multiple edges).

Notice that this decomposition is reversible, though not uniquely so. Consider two cubic graphs G_{1}, G_{2}. Form $G_{1} \curlyvee G_{2}$ by distinguishing a vertex on each (v_{1}, v_{2} respectively) and identifying the edges incident to v_{1} with the edges incident to v_{2}. A priori, there are many ways to choose v_{1}, v_{2} and many ways to identify their incident edges. We will abuse the notation $G_{1} Y G_{2}$ by using it to denote a particular one of these many choices. It is easy to see that this operation preserves many properties. We highlight two useful properties here; the proofs are straightforward.

Lemma 2.1. Let G be a cubic graph. If $G=G_{1} \curlyvee G_{2}$ then G is planar if and only if G_{1} and G_{2} are planar.
Recall that if G is cubic and class 1 it must be bridgeless. Note that if G_{1} and G_{2} are connected graphs that have bridges, then $G=G_{1}$ Y G_{2} may have one, two, or three components depending on whether the cut edges are bridges and how they are identified.

Lemma 2.2. Let G be a cubic graph. If $G=G_{1} \curlyvee G_{2}$ then G is bipartite if and only if G_{1} and G_{2} are bipartite.
Proof. Suppose G is a bipartite cubic graph with nontrivial 3-edge cut E_{C} and $G_{1}^{\prime}, G_{2}^{\prime}$ the induced subgraphs of $G \backslash E_{C}$. For a bipartition of G to descend naturally to bipartitions of G_{1}, G_{2}, the edges of E_{C} must be incident only to vertices in G_{i}^{\prime} that are in the same part of G. Therefore, assume this is not the case and (without loss of generality) that two of the edges of E_{C} are incident to one part of G_{1}^{\prime} and the remaining edge of E_{C} is incident to the other part of G_{1}^{\prime}. Let G_{1}^{\prime} have m_{j} vertices belonging to part j of G. There are $3 m_{1}-1$ edges emanating from part 1 of G_{1}^{\prime} that must be incident to vertices of part 2 of G_{1}^{\prime}. On the other hand, there are $3 m_{2}-2$ edges emanating from part 2 of G_{1}^{\prime} that must be incident to vertices in part 1 . Thus $3 m_{1}-1=3 m_{2}-2$, which is impossible.

Conversely, if G_{1}, G_{2} are bipartite, with distinguished v_{1}, v_{2} for the purpose of forming $G_{1} \curlyvee G_{2}$, then use the bipartition of G_{1} and assign v_{2} to the opposite part as v_{1} to induce a bipartition of $G_{1} \Upsilon G_{2}$.

Theorem 2.3. A cubic graph H that is 2-connected but not 3-connected may be decomposed via \Varangle into a set of cubic loopless graphs $\left\{H_{i}\right\}$ where each H_{i} is 3-connected.

Proof. The proof is inductive on the number of vertices of H. Because H is 2-connected but not 3-connected, there exists a 2 -vertex separating set. Fig. 2 shows the three possible edge configurations for a 2 -vertex separating set of a cubic graph,

https://daneshyari.com/en/article/4647207

Download Persian Version:
https://daneshyari.com/article/4647207

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: smbelcas@toroidalsnark.net (s.-m. belcastro), rhaas@smith.edu (R. Haas).

