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a b s t r a c t

Two n-edge colorings of a graph are edge-Kempe equivalent if one can be obtained from
the other by a series of edge-Kempe switches. In this work we show every planar bipartite
cubic graph has exactly one edge-Kempe equivalence class, when 3 = χ ′(G) colors are
used. In contrast, we also exhibit infinite families of nonplanar bipartite cubic (and thus
3-edge colorable) graphswith a range of numbers of edge-Kempe equivalence classeswhen
using 3 colors. These results address a question raised by Mohar.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and summary

Back in the frosts of time, Alfred BrayKempe introduced the notion of changing colorings by switchingmaximal two-color
chains of vertices (for vertex colorings) [4] or edges (for edge colorings). Themaximal two-color chains are now called Kempe
chains and edge-Kempe chains respectively; switching the colors along such a chain is called a Kempe switch or edge-Kempe
switch as appropriate. This process is of interest across the study of colorings. It is also of interest in statistical mechanics,
where certain dynamics in the antiferromagnetic q-state Potts model correspond to Kempe switches on vertex colorings
[8,9]. In some cases, these dynamics also correspond to edge-Kempe switches [7].

In the present work we are concerned with understanding when two edge-colorings are equivalent under a sequence
of edge-Kempe switches without introducing additional colors and when not. We will say that two n-colorings are edge
Kempe-equivalent if they are equivalent without introducing additional colors. We allow multiple edges on our (labeled)
graphs; loops are prohibited (and will mostly be excluded by other constraints such as 3-edge colorability).

A single edge-Kempe switch is denoted by—. That is, if coloring ci becomes coloring cj after a single edge-Kempe switch,
then ci−cj. If coloring cj can be converted to coloring ck by a sequence of edge-Kempe switches, then cj and ck are equivalent;
we denote this by cj ∼ ck. Because ∼ is an equivalence relation, we may consider the equivalence classes on the set of
colorings of a graph G edge-colored with n colors. In this paper we focus on the number of edge-Kempe equivalence classes
and denote this quantity by K ′(G, n). (In other work this has been denoted Ke(L(G), n) [6] and κE(G, n) [5].)

Note that any global permutation of colors can be achieved by edge-Kempe switches because the symmetric group Sn is
generated by transpositions. Thus two colorings that differ only by a permutation of colors are edge-Kempe equivalent for
any number of colors.

Recall that ∆(G) is the largest vertex degree in G and that χ ′(G) is the smallest number of colors needed to properly
edge-color G. Mohar has shown that when more colors are used than possibly needed to edge-color the graph, then
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Fig. 1. Decomposing a graph over a 3-edge cut.

there is but a single edge-Kempe equivalence class, i.e., when n > χ ′(G) + 1 then K ′(G, n) = 1 [6, Theorem 3.1].
More is known if ∆(G) is restricted; when ∆(G) ≤ 4, K ′(G, ∆(G) + 2) = 1 [5, Theorem 2] and when ∆(G) ≤

3, K ′(G, ∆(G) + 1) = 1 [5, Theorem 3]. For bipartite graphs there is a stronger result: when n > ∆(G), K ′(G, n) = 1
[6, Theorem 3.3]. Little is known about K ′(G, ∆(G)) except that there are cases in which K ′(G, ∆(G)) > 1.

In this paper we focus on 3-edge colorable cubic graphs, and examine K ′(G, χ ′(G)) = K ′(G, 3). Mohar suggested
classifying cubic bipartite graphs with K ′(G, 3) = 1 [6]; we provide a partial answer here. Mohar also points out in [6]
that it follows from a result of Fisk in [2] that every planar 3-connected cubic bipartite graph G has K ′(G, 3) = 1. We show
(in Section 4) that for G planar, bipartite and cubic, G has K ′(G, 3) = 1.

The remainder of the paper proceeds as follows. Section 2 introduces a decomposition of cubic graphs along 3-edge
cuts that preserve planarity and bipartiteness. The theorems in Section 3 use this edge-cut decomposition to combine and
decompose 3-edge colorings.We also show that any edge-Kempe equivalence can avoid color changes at a particular vertex.
Then, in Section 4 we compute K ′(G, 3) in terms of the edge-cut decomposition of G, and exhibit infinite families of simple
nonplanar bipartite cubic graphs with a range of numbers of edge-Kempe equivalence classes.

2. Decompositions of cubic graphs

Any 3-edge cut of a cubic graph may be used to decompose a cubic graph G into two cubic graphs G1,G2 as follows. For
3-edge cut EC = {(s11s21), (s12s22), (s13s23)} where vertices s1j are on one side of the cut and s2j on the other, let the induced
subgraphs of G\EC separated by EC be G′

1,G
′

2. Then for i = 1, 2 define Gi by V (Gi) = V (G′

i)∪vi and E(Gi) = E(G′

i)∪ECi where
ECi = {(visij)| j = 1, 2, 3}, as is shown in Fig. 1. Note that if sij = sik then Gi will contain a multiple edge. This decomposition
will be written as G = G1 G2.

We say the edge cut is nontrivial if both G1 and G2 have fewer vertices than G. Using nontrivial edge cuts, we may
decompose a cubic graph G into a set of smaller graphs {Gi} where each Gi has no nontrivial edge cuts (but may have
additional multiple edges).

Notice that this decomposition is reversible, though not uniquely so. Consider two cubic graphs G1,G2. Form G1 G2 by
distinguishing a vertex on each (v1, v2 respectively) and identifying the edges incident to v1 with the edges incident to v2.
A priori, there are many ways to choose v1, v2 and many ways to identify their incident edges. We will abuse the notation
G1 G2 by using it to denote a particular one of these many choices. It is easy to see that this operation preserves many
properties. We highlight two useful properties here; the proofs are straightforward.

Lemma 2.1. Let G be a cubic graph. If G = G1 G2 then G is planar if and only if G1 and G2 are planar.

Recall that if G is cubic and class 1 it must be bridgeless. Note that if G1 and G2 are connected graphs that have bridges,
then G = G1 G2 may have one, two, or three components depending on whether the cut edges are bridges and how they
are identified.

Lemma 2.2. Let G be a cubic graph. If G = G1 G2 then G is bipartite if and only if G1 and G2 are bipartite.

Proof. Suppose G is a bipartite cubic graph with nontrivial 3-edge cut EC and G′

1,G
′

2 the induced subgraphs of G \ EC . For
a bipartition of G to descend naturally to bipartitions of G1,G2, the edges of EC must be incident only to vertices in G′

i that
are in the same part of G. Therefore, assume this is not the case and (without loss of generality) that two of the edges of
EC are incident to one part of G′

1 and the remaining edge of EC is incident to the other part of G′

1. Let G
′

1 have mj vertices
belonging to part j of G. There are 3m1 − 1 edges emanating from part 1 of G′

1 that must be incident to vertices of part 2 of
G′

1. On the other hand, there are 3m2 − 2 edges emanating from part 2 of G′

1 that must be incident to vertices in part 1. Thus
3m1 − 1 = 3m2 − 2, which is impossible.

Conversely, if G1,G2 are bipartite, with distinguished v1, v2 for the purpose of forming G1 G2, then use the bipartition
of G1 and assign v2 to the opposite part as v1 to induce a bipartition of G1 G2. �

Theorem 2.3. A cubic graph H that is 2-connected but not 3-connected may be decomposed via into a set of cubic loopless
graphs {Hi} where each Hi is 3-connected.

Proof. The proof is inductive on the number of vertices of H . Because H is 2-connected but not 3-connected, there exists a
2-vertex separating set. Fig. 2 shows the three possible edge configurations for a 2-vertex separating set of a cubic graph,
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