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a b s t r a c t

In 1995 Stanley introduced the chromatic symmetric function XG associated to a simple
graph G as a generalization of the chromatic polynomial of G. In this paper we present
a novel technique to write XG as a linear combination of chromatic symmetric functions
of smaller graphs. We use this technique to give a sufficient condition for two graphs to
have the same chromatic symmetric function. We then construct an infinite family of pairs
of unicyclic graphs with the same chromatic symmetric function, answering the question
posed by Martin, Morin, and Wagner of whether such a pair exists. Finally, we approach
the problem of whether it is possible to determine a tree from its chromatic symmetric
function. Working towards an answer to this question, we give a classification theorem for
single-centroid trees in terms of data closely related to its chromatic symmetric function.

© 2013 Elsevier B.V. All rights reserved.

0. Introduction

In 1995, Stanley [12] introduced a symmetric function XG = XG(x1, x2, . . .) associated with any simple graph G (see
Section 1 for a precise definition) called the chromatic symmetric function of G. XG has the property that when we specialize
the variables to x1 = · · · = xk = 1 and xi = 0 for all i > k then XG gives the number of ways to properly color the vertices
of Gwith k colors. Hence XG(1, 1, . . . , 1, 0, . . .) = χG(k), where χG is the chromatic polynomial of G.

One of the first questions posed by Stanley was whether XG determines G. As expected this is not the case, and Stanley
provides the example of the kite and the bowtie as nonisomorphic graphs with the same XG [12, Fig. 1]. Although two
nonisomorphic graphs may share the same chromatic symmetric function, Stanley conjectured that two nonisomorphic
trees must have distinct chromatic symmetric functions. This conjecture is true for trees with 25 or fewer vertices as
computed by Keeler Russell in [10]. Other evidence that Stanley’s conjecture is true has been found by Morin [9] and
Fougere [4] who showed that some families of trees are determined by the chromatic symmetric function. Martin, Morin
andWagner [8] showed that the degree sequence and path sequence of a tree, T , can be obtained fromXT . They also showed
that some families of trees, called caterpillars and spiders, can be determined from their chromatic symmetric function.

A fundamental property of the chromatic polynomial is the deletion–contraction property, which allows us to write χG(k)
as a linear combination of the chromatic polynomials of graphs with fewer edges. This property is the basis for inductive
proofs of many other properties of the chromatic polynomial. Unfortunately XG does not satisfy a deletion–contraction law
which makes it difficult to apply the useful technique of induction. Gebhard and Sagan [5] introduced a non-commutative
version of XG that satisfies the deletion–contraction property and is a complete invariant of graphs. One of our results is a
technique to decomposeXG as a linear combination of chromatic symmetric functions of other graphs. And in the case when
G has a trianglewe canwriteXG as a linear combination of chromatic symmetric functions of graphswith fewer edges thanG.
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There are many properties of G that can be recovered from XG. These include the number of vertices, the number of
connected components, the number of matchings, and the girth. We have found that the number of triangles in G can also
be recovered from XG. In the case that the graph is a tree, T , a lot more can be recovered from XT ; for example, the degree
sequence can be recovered from XT [8]. This is no longer true for general graphs, the bowtie/kite pair of graphs were shown
by Stanley to have the same chromatic symmetric function but different degree sequences. Although the degree sequence
can no longer be recovered from XG for arbitrary G, we show that the sum of the squares of the degrees can be recovered
from XG. This is a generalization of a result in [4] that shows the analogous result for trees.

In [8] the authors showed that XG is an complete invariant for two special families of unicyclic graphs and askedwhether
there exists a pair of unicyclic graphs with the same XG. We answer this question in the affirmative by giving a pair of
unicyclic graphs with the same chromatic symmetric function. In fact, our Theorem 4.2 gives a sufficient condition for two
graphs to have the same chromatic symmetric function.We apply this theorem to construct infinitelymany pairs of unicyclic
graphs with the same XG. The same technique can also be used to construct pairs of general graphs with the same XG. We
have also studied trees and we give a classification theorem for trees with one centroid. This classification arose from our
study of the chromatic symmetric function of a tree when written in the power-sum symmetric basis.

Our paper is organized as follows. In Section 1 we review background information, set up notation, and define the
chromatic symmetric function. In Section 2 we look at properties of G that are determined by XG for general graphs. In
particular, we show that the sum of the squares of the degrees as well as the number of triangles in a graph can be recovered
from the chromatic symmetric function. In Section 3 we show how the chromatic symmetric function of a graph can be
written as a linear combination of other chromatic symmetric functions. In Section 4 we focus our attention on unicyclic
graphs. We also prove a sufficient condition for two graphs to have the same chromatic symmetric function and show how
to construct pairs of graphs with the same XG. In our last section, Section 5, we prove a classification theorem for trees
with a single centroid that is closely related to the coefficients of the chromatic symmetric function when written in the
power-sum symmetric basis.

1. Preliminaries

We assume that the reader is familiar with the basic facts about graphs found in any introductory graph theory book
(see e.g., [1,3,7]). In this section we establish notation that will be used throughout the paper. A graph G is an ordered pair
(V , E), where V = V (G) is the vertex set and E = E(G) is the edge set. All our graphs are simple, i.e., we do not allow loops
or multiple edges. The number of vertices #V (G) is called the order of the graph. We will write uv for the edge joining the
vertices u, v ∈ V (G) if such an edge exists. We say that u and v are endpoints of uv, that uv is incident to u and v, and that u
is adjacent to v. If two edges have no endpoints in common, they are disjoint. The degree d(v) of a vertex v is the number of
edges incident to v. The degree sequence of a graph G is the non-increasing sequence of its vertex degrees. An isolated vertex
is a vertex of degree 0. A leaf is a vertex of degree 1. The girth of a graph is the number of distinct vertices in a shortest cycle
in the graph. An acyclic graph has infinite girth.

A subgraph G′
⊆ G of a graph G = (V (G), E(G)) is a graph G′

= (V ′(G), E ′(G)) such that V ′(G) ⊆ V (G) and E ′(G) ⊆ E(G).
A subgraph is said to be induced by the vertex set V ′(G) if every edge in E(G) having endpoints in V ′(G) is also in E ′(G). A
subgraph H is a spanning subgraph of G if it has the same vertex set as G. A subgraph is said to be a matching of size k if it
consists of k disjoint edges on 2k vertices.

In this paper we are interested in certain classes of simple graphs. A graph is called unicyclic if it contains exactly one
cycle, a forest if it contains no cycles, and a tree if it is a connected forest. Notice that a connected unicyclic graph with n
vertices has n edges.

In the following proposition we summarize some well-known facts about trees. The reader may refer to [1,3,7] or any
other introductory graph theory textbook for proofs of these facts.

Proposition 1.1 ([1, pp. 99–100]).
(1) In a tree, any two vertices are connected by exactly one path.
(2) Every tree on n vertices has n − 1 edges. In general, a forest on n vertices with c connected components has n − c edges.
(3) Every nontrivial tree has at least two leaves. In general, if a forest contains c connected nontrivial components, then it contains

at least 2c leaves.

We now give two definitions that are not as standard as the others we have given so far. We will use these definitions in
Section 5. For further reading on these concepts see [7].

Definition 1.2. Theweight of a vertex v of a tree T is themaximal number of edges in any subtree of T containing v as a leaf.

Definition 1.3. The centroid of a tree T is the set of all vertices of T having minimum weight.

An example of the weights of vertices of a tree is shown in Fig. 1. In that graph, the vertex with weight 8 is the centroid
of the tree.

Proposition 1.4 ([1, p. 99]). Every tree has a centroid consisting of either one vertex or two adjacent vertices (see Fig. 2).
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