Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A weight statistic and partial order on products of *m*-cycles

Johnathon Upperman, C. Ryan Vinroot*

Department of Mathematics, College of William and Mary, P. O. Box 8795, Williamsburg, VA 23187, United States

ARTICLE INFO

ABSTRACT

Article history: Received 20 March 2013 Received in revised form 26 September 2013 Accepted 2 October 2013 Available online 18 October 2013

Keywords: Symmetric group m-cycles Bruhat order EL-shellable posets

1. Introduction

Let *m*, *n* be integers, with $2 \le m \le n$, let S_n be the symmetric group on $[n] = \{1, 2, ..., n\}$, and let $\delta \in S_n$ be a product of disjoint *m*-cycles. In particular, if *m* is prime, then δ is just an element of order *m* in S_n (or the identity, if it is the product of zero *m*-cycles). Writing δ in cycle notation, suppose we have δ is a product of *k* disjoint *m*-cycles (so $mk \le n$), so that

$$\delta = (a_{1,1} a_{1,2} \cdots a_{1,m})(a_{2,1} a_{2,2} \cdots a_{2,m}) \cdots (a_{k,1} a_{k,2} \cdots a_{k,m}).$$
(1.1)

Further, suppose that for each i = 1, 2, ..., k, $a_{i,1} < a_{i,j}$ for j = 2, 3, ..., m, and $a_{1,1} < a_{2,1} < \cdots < a_{k,1}$, and we then say that δ is in *standard form*. Let $J^{(m)}(n)$ denote the collection of all products of disjoint *m*-cycles in S_n , and let $J^{(m)}(n, k)$ denote the collection of all products of all products of $\delta \in J^{(m)}(n, k)$ in (1.1). Given $\delta \in J^{(m)}(n, k)$ in standard form as in (1.1), define span(δ) as

span(
$$\delta$$
) = $\sum_{i=1}^{k} \sum_{j=2}^{m} (a_{i,j} - a_{i,1} - 1).$

For example, suppose $\delta \in J^{(3)}(9, 3)$, where $\delta = (1 \ 6 \ 9)(2 \ 7 \ 4)(3 \ 5 \ 8)$. Then

 $span(\delta) = (5-1) + (8-1) + (5-1) + (2-1) + (2-1) + (5-1) = 21.$

Given an *m*-cycle $(a_1 \ a_2 \dots a_m) \in S_n$ in standard form, draw its *arc diagram* by drawing, along a line containing points labeled from [n], an arc for each pair (a_1, a_j) , $j = 2, \dots, m$, where the arc (a_1, a_l) is drawn under (a_1, a_j) when l > j. When $a_j > a_l$ and j > l, then the arcs (a_1, a_j) and (a_1, a_l) intersect in the arc diagram, which we call an *internal crossing* of the *m*-cycle. That is, the number of internal crossings of the *m*-cycle $(a_1 \ a_2 \dots a_m)$ is equal to the number of pairs (a_i, a_j) from the sequence a_2, a_3, \dots, a_m , which satisfy i < j and $a_i < a_j$, which we call *ascents* of this sequence (which are also known as non-inversions). In Figs. 1 and 2, for example, we show the arc diagrams for the 5-cycles (1 4 5 3 2) and (1 2 4 5 3), with the internal crossings circled.

R. S. Deodhar and M. K. Srinivasan defined a weight statistic on the set of involutions in the symmetric group and proved several results about the properties of this weight. These results include a recursion for a weight generating function, that the weight provides a grading for the set of fixed-point free involutions under a partial order related to the Bruhat partial order, and that this graded poset is EL-shellable and its order complex triangulates a ball. We extend the definition of weight to products of disjoint *m*-cycles in the symmetric group, and we generalize all of the results of Deodhar and Srinivasan just mentioned to the case of any m > 2.

© 2013 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: jkupperman@email.wm.edu (J. Upperman), vinroot@math.wm.edu (C.R. Vinroot).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.10.002

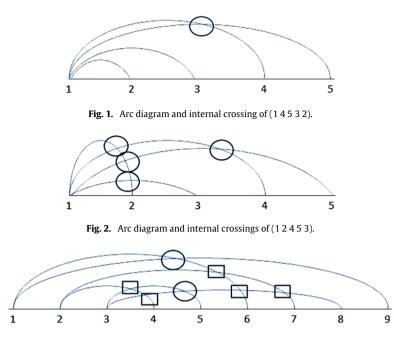


Fig. 3. Arc diagram and all crossings of (169) (274) (358).

If $\delta \in J^{(m)}(n, k)$, the arc diagram for δ is drawn by drawing the arc diagram for each of the *k* disjoint *m*-cycles of δ . There may be intersections of the arcs from different *m*-cycles of δ , which we call *external crossings* of δ . Let $C_{in}(\delta)$ denote the total number of internal crossings in the arc diagram of δ , and $C_{ex}(\delta)$ denote the total number of external crossings in the arc diagram of δ . The crossing number of δ , $C(\delta)$, is then defined as $C(\delta) = C_{ex}(\delta) + C_{in}(\delta)$. In Fig. 3, we show the arc diagram for $\delta = (1 \ 6 \ 9)(2 \ 7 \ 4)(3 \ 5 \ 8) \in J^{(3)}(9, 3)$, with internal crossings in circles and external crossings in boxes.

Now, given any $\delta \in J^{(m)}(n)$, we define the *weight* of δ , which we denote wt_m(δ), as

$$\operatorname{wt}_m(\delta) = \operatorname{span}(\delta) - C(\delta) = \operatorname{span}(\delta) - C_{\operatorname{ex}}(\delta) - C_{\operatorname{in}}(\delta).$$

So, for $\delta = (1 \ 6 \ 9)(2 \ 7 \ 4)(3 \ 5 \ 8)$, since span(δ) = 21 and $C(\delta) = 7$ from Fig. 3, then wt₃(δ) = 14. We note that for m = 2, our definition of weight coincides precisely with that from [5], since if $\delta \in S_n$ is an involution, then $C_{in}(\delta) = 0$.

Given integers $n, k \ge 0, m \ge 2$, with $mk \le n$, define the weight generating function, denoted $j_q^{(m)}(n, k)$, to be the following polynomial in an indeterminate q:

$$j_q^{(m)}(n,k) = \sum_{\delta \in J^{(m)}(n,k)} q^{\mathsf{wt}_m(\delta)}$$

In Section 2, we prove a recursive relation on the weight generating function in terms of *n* and *k* (Theorem 2.1), and we use it to compute an exact formula (Corollary 2.1) for $j_q^{(m)}(mn, n)$, the weight generating function for the set of products of disjoint *m*-cycles in S_{mn} which are fixed-point free. We use the notation $F^{(m)}(mn) = J^{(m)}(mn, n)$ for the set of fixed-point free products of disjoint *m*-cycles in S_{mn} .

In Section 3, we introduce the Bruhat order (sometimes called the *strong* Bruhat order) on the symmetric group S_n , which makes S_n a graded poset with grading given by the number of inversions of a permutation. We consider a specific subset $E(n_m)$ of a permutation group $S(n_m)$ (identified with S_{mn}), and the set $E(n_m)$ is in bijection with the set $F^{(m)}(mn)$ of fixed-point free products of disjoint *m*-cycles in S_{mn} . In Proposition 3.1, we show that an explicit bijection ϕ defined between these two sets maps the weight wt_m of a permutation in $F^{(m)}(mn)$ to the number of inversions of the permutation in $E(n_m)$.

Now let δ , $\pi \in F^{(m)}(mn)$, and suppose that

$$\delta = (a_{1,1} \ a_{1,2} \cdots \ a_{1,m})(a_{2,1} \ a_{2,2} \ \cdots \ a_{2,m}) \cdots (a_{n,1} \ a_{n,2} \ \cdots \ a_{n,m})$$

is in standard form. Then π is obtained from δ by an *interchange* if one of the following holds:

- (i) There is some $i, 1 \le i \le n$, and some $j, l, 2 \le j, l \le m$, such that the standard form of π is obtained by interchanging $a_{i,i}$ and $a_{i,l}$ in δ .
- (ii) There are some $i, j, 1 \le i < j \le n$, and some $l, 2 \le l \le m$, such that the standard form of π is obtained by interchanging $a_{i,l}$ and $a_{i,1}$ in δ .
- (iii) There are some $i, j, l, h, 2 \le l, h \le m, l \ne h, 1 \le i < j \le n$, such that the standard form of π is obtained by interchanging $a_{i,l}$ and $a_{j,h}$ in δ .

Download English Version:

https://daneshyari.com/en/article/4647585

Download Persian Version:

https://daneshyari.com/article/4647585

Daneshyari.com