A weight statistic and partial order on products of m-cycles

Johnathon Upperman, C. Ryan Vinroot*
Department of Mathematics, College of William and Mary, P. O. Box 8795, Williamsburg, VA 23187, United States

ARTICLE INFO

Article history:

Received 20 March 2013
Received in revised form 26 September 2013
Accepted 2 October 2013
Available online 18 October 2013

Keywords:

Symmetric group
m-cycles
Bruhat order
EL-shellable posets

Abstract

R. S. Deodhar and M. K. Srinivasan defined a weight statistic on the set of involutions in the symmetric group and proved several results about the properties of this weight. These results include a recursion for a weight generating function, that the weight provides a grading for the set of fixed-point free involutions under a partial order related to the Bruhat partial order, and that this graded poset is EL-shellable and its order complex triangulates a ball. We extend the definition of weight to products of disjoint m-cycles in the symmetric group, and we generalize all of the results of Deodhar and Srinivasan just mentioned to the case of any $m \geq 2$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let m, n be integers, with $2 \leq m \leq n$, let S_{n} be the symmetric group on $[n]=\{1,2, \ldots, n\}$, and let $\delta \in S_{n}$ be a product of disjoint m-cycles. In particular, if m is prime, then δ is just an element of order m in S_{n} (or the identity, if it is the product of zero m-cycles). Writing δ in cycle notation, suppose we have δ is a product of k disjoint m-cycles (so $m k \leq n$), so that

$$
\begin{equation*}
\delta=\left(a_{1,1} a_{1,2} \cdots a_{1, m}\right)\left(a_{2,1} a_{2,2} \cdots a_{2, m}\right) \cdots\left(a_{k, 1} a_{k, 2} \cdots a_{k, m}\right) \tag{1.1}
\end{equation*}
$$

Further, suppose that for each $i=1,2, \ldots, k, a_{i, 1}<a_{i, j}$ for $j=2,3, \ldots, m$, and $a_{1,1}<a_{2,1}<\cdots<a_{k, 1}$, and we then say that δ is in standard form. Let $J^{(m)}(n)$ denote the collection of all products of disjoint m-cycles in S_{n}, and let $J^{(m)}(n, k)$ denote the collection of all products of k disjoint m-cycles in S_{n}, so that $\delta \in J^{(m)}(n, k)$ in (1.1). Given $\delta \in J^{(m)}(n, k)$ in standard form as in (1.1), define $\operatorname{span}(\delta)$ as

$$
\operatorname{span}(\delta)=\sum_{i=1}^{k} \sum_{j=2}^{m}\left(a_{i, j}-a_{i, 1}-1\right)
$$

For example, suppose $\delta \in J^{(3)}(9,3)$, where $\delta=(169)(274)(358)$. Then

$$
\operatorname{span}(\delta)=(5-1)+(8-1)+(5-1)+(2-1)+(2-1)+(5-1)=21
$$

Given an m-cycle $\left(a_{1} a_{2} \ldots a_{m}\right) \in S_{n}$ in standard form, draw its arc diagram by drawing, along a line containing points labeled from $[n]$, an arc for each pair $\left(a_{1}, a_{j}\right), j=2, \ldots, m$, where the arc $\left(a_{1}, a_{l}\right)$ is drawn under $\left(a_{1}, a_{j}\right)$ when $l>j$. When $a_{j}>a_{l}$ and $j>l$, then the arcs $\left(a_{1}, a_{j}\right)$ and $\left(a_{1}, a_{l}\right)$ intersect in the arc diagram, which we call an internal crossing of the m-cycle. That is, the number of internal crossings of the m-cycle $\left(a_{1} a_{2} \ldots a_{m}\right)$ is equal to the number of pairs $\left(a_{i}, a_{j}\right)$ from the sequence $a_{2}, a_{3}, \ldots, a_{m}$, which satisfy $i<j$ and $a_{i}<a_{j}$, which we call ascents of this sequence (which are also known as non-inversions). In Figs. 1 and 2, for example, we show the arc diagrams for the 5-cycles (14532) and (12453), with the internal crossings circled.

[^0]

Fig. 1. Arc diagram and internal crossing of ($\left.14 \begin{array}{ll}4 & 5 \\ 3 & 2\end{array}\right)$.

Fig. 2. Arc diagram and internal crossings of (1 1245 3).

Fig. 3. Arc diagram and all crossings of $(169)(274)(358)$.
If $\delta \in J^{(m)}(n, k)$, the arc diagram for δ is drawn by drawing the arc diagram for each of the k disjoint m-cycles of δ. There may be intersections of the arcs from different m-cycles of δ, which we call external crossings of δ. Let $C_{\text {in }}(\delta)$ denote the total number of internal crossings in the arc diagram of δ, and $C_{\mathrm{ex}}(\delta)$ denote the total number of external crossings in the arc diagram of δ. The crossing number of $\delta, C(\delta)$, is then defined as $C(\delta)=C_{\mathrm{ex}}(\delta)+C_{\mathrm{in}}(\delta)$. In Fig. 3, we show the arc diagram for $\delta=(169)(274)(358) \in J^{(3)}(9,3)$, with internal crossings in circles and external crossings in boxes.

Now, given any $\delta \in J^{(m)}(n)$, we define the weight of δ, which we denote $\mathrm{wt}_{m}(\delta)$, as

$$
\mathrm{wt}_{m}(\delta)=\operatorname{span}(\delta)-C(\delta)=\operatorname{span}(\delta)-C_{\mathrm{ex}}(\delta)-C_{\mathrm{in}}(\delta)
$$

So, for $\delta=(169)(274)(358)$, since span $(\delta)=21$ and $C(\delta)=7$ from Fig. 3, then $\mathrm{wt}_{3}(\delta)=14$. We note that for $m=2$, our definition of weight coincides precisely with that from [5], since if $\delta \in S_{n}$ is an involution, then $C_{\text {in }}(\delta)=0$.

Given integers $n, k \geq 0, m \geq 2$, with $m k \leq n$, define the weight generating function, denoted $j_{q}^{(m)}(n, k)$, to be the following polynomial in an indeterminate q :

$$
j_{q}^{(m)}(n, k)=\sum_{\delta \in J^{(m)}(n, k)} q^{\mathrm{wt}_{m}(\delta)}
$$

In Section 2, we prove a recursive relation on the weight generating function in terms of n and k (Theorem 2.1), and we use it to compute an exact formula (Corollary 2.1) for $j_{q}^{(m)}(m n, n)$, the weight generating function for the set of products of disjoint m-cycles in $S_{m n}$ which are fixed-point free. We use the notation $F^{(m)}(m n)=J^{(m)}(m n, n)$ for the set of fixed-point free products of disjoint m-cycles in $S_{m n}$.

In Section 3, we introduce the Bruhat order (sometimes called the strong Bruhat order) on the symmetric group S_{n}, which makes S_{n} a graded poset with grading given by the number of inversions of a permutation. We consider a specific subset $E\left(n_{m}\right)$ of a permutation group $S\left(n_{m}\right)$ (identified with $\left.S_{m n}\right)$, and the set $E\left(n_{m}\right)$ is in bijection with the set $F^{(m)}$ (mn) of fixedpoint free products of disjoint m-cycles in $S_{m n}$. In Proposition 3.1, we show that an explicit bijection ϕ defined between these two sets maps the weight wt_{m} of a permutation in $F^{(m)}(m n)$ to the number of inversions of the permutation in $E\left(n_{m}\right)$.

Now let $\delta, \pi \in F^{(m)}(\mathrm{mn})$, and suppose that

$$
\delta=\left(a_{1,1} a_{1,2} \cdots a_{1, m}\right)\left(a_{2,1} a_{2,2} \cdots a_{2, m}\right) \cdots\left(a_{n, 1} a_{n, 2} \cdots a_{n, m}\right)
$$

is in standard form. Then π is obtained from δ by an interchange if one of the following holds:
(i) There is some $i, 1 \leq i \leq n$, and some $j, l, 2 \leq j, l \leq m$, such that the standard form of π is obtained by interchanging $a_{i, j}$ and $a_{i, l}$ in δ.
(ii) There are some $i, j, 1 \leq i<j \leq n$, and some $l, 2 \leq l \leq m$, such that the standard form of π is obtained by interchanging $a_{i, l}$ and $a_{j, 1}$ in δ.
(iii) There are some $i, j, l, h, 2 \leq l, h \leq m, l \neq h, 1 \leq i<j \leq n$, such that the standard form of π is obtained by interchanging $a_{i, l}$ and $a_{j, h}$ in δ.

https://daneshyari.com/en/article/4647585

Download Persian Version:

https://daneshyari.com/article/4647585

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jkupperman@email.wm.edu (J. Upperman), vinroot@math.wm.edu (C.R. Vinroot).

