Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A new characterization of taut distance-regular graphs of odd diameter

Mark S. MacLean

Mathematics Department, Seattle University, 901 Twelfth Avenue, Seattle, WA 98122-1090, USA

ARTICLE INFO

Article history: Received 31 May 2013 Received in revised form 1 October 2013 Accepted 5 October 2013 Available online 26 October 2013

Keywords: Distance-regular graph Association scheme Bipartite graph Taut graph

ABSTRACT

We consider a bipartite distance-regular graph Γ with vertex set X, diameter $D \ge 4$, and valency $k \ge 3$. Let \mathbb{C}^X denote the vector space over \mathbb{C} consisting of column vectors with rows indexed by X and entries in \mathbb{C} . For $z \in X$, let \hat{z} denote the vector in \mathbb{C}^X with a 1 in the z^{th} row and 0 in all other rows. For $0 \le i \le D$, let $\Gamma_i(z)$ denote the set of vertices in X that are distance i from z. Fix $x, y \in X$ with distance $\partial(x, y) = 2$. For $0 \le i, j \le D$, we define $w_{ij} = \sum \hat{z}$, where the sum is over all vertices $z \in \Gamma_i(x) \cap \Gamma_j(y)$. Define a parameter Δ in terms of the intersection numbers by $\Delta = (b_1 - 1)(c_3 - 1) - (c_2 - 1)p_{22}^2$. For $2 \le i \le D - 2$ we define vectors $w_{ii}^+ = \sum |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)|\hat{z}$, where the sum is over all vertices $z \in \Gamma_i(x) \cap \Gamma_i(y)$. We define $W = \text{span}\{w_{ij}, w_{hh}^+ \mid 0 \le i, j \le D, 2 \le h \le D - 2\}$. In [M. MacLean, An inequality involving two eigenvalues of a bipartite distance-regular graph, Discrete Math. 225 (2000) 193–216], MacLean defined what it means for Γ to be *taut*. Assume D is odd. We show Γ is taut if and only if $\Delta \neq 0$ and the subspace W is invariant under multiplication by the adjacency matrix.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this introduction, let Γ denote a bipartite distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$, and eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_D$ (see Section 2 for formal definitions). In [14, Theorem 5.11], we showed that the intersection numbers of Γ satisfy

$$b_3((k-2)b_2 - \theta_1^2(\mu-1))((k-2)b_2 - \theta_d^2(\mu-1)) \ge b_1 \Delta(\theta_1^2 - b_2)(b_2 - \theta_d^2), \tag{1}$$

where $d = \lfloor D/2 \rfloor$, and where $\Delta = (b_1 - 1)(c_3 - 1) - (\mu - 1)p_{22}^2$. When $\Delta = 0$, equality holds in (1) precisely when Γ is 2-homogeneous in the sense of Curtin [4] and Nomura [18]. We defined Γ to be *taut* whenever $\Delta \neq 0$ and equality holds in (1). In this paper, we obtain a new characterization of the taut condition in the case where *D* is odd.

Let X denote the vertex set of Γ , and let \mathbb{C}^X denote the vector space over \mathbb{C} consisting of column vectors with rows indexed by X and entries in \mathbb{C} . For $z \in X$, let \hat{z} denote the vector in \mathbb{C}^X with a 1 in the *z*th row and 0 in all other rows. For $0 \le i \le D$, let $\Gamma_i(z)$ denote the set of vertices in X that are distance *i* from *z*. Fix $x, y \in X$ with distance $\partial(x, y) = 2$. For $0 \le i, j \le D$, we define $w_{ij} = \sum \hat{z}$, where the sum is over all vertices $z \in \Gamma_i(x) \cap \Gamma_j(y)$. For $2 \le i \le D - 1$ we define vectors $w_{ii}^+ = \sum |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)|\hat{z}$, where the sum is over all vertices $z \in \Gamma_i(x) \cap \Gamma_i(y)$.

To provide context for our work, we now mention two theorems proven by Curtin and Miklavic, respectively. For notational purposes, let $\mathcal{L} = \{ij \mid 0 \le i, j \le D, i+j \ge 2, |i-j| \in \{0, 2\}\}.$

Theorem 1.1 ([4, Theorem 17]). The following are equivalent.

(i) Γ is 2-homogeneous.

(ii) The vector space span{ $w_{ii} \mid ij \in \mathcal{L}$ } is invariant under multiplication by the adjacency matrix.

E-mail address: macleanm@seattleu.edu.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.10.005

Theorem 1.2 ([17, Theorems 11.4, 11.6]). Assume Γ is Q-polynomial (see [2] for the definition). Then (i)–(ii) hold below.

- (i) Assume Γ is the antipodal quotient of the 2D-cube. Then the vector space span $\{w_{ij}, w_{D-1,D-1}^+ \mid ij \in \mathcal{L}\}$ is invariant under multiplication by the adjacency matrix.
- (ii) Assume Γ is neither 2-homogeneous nor the antipodal quotient of the 2D-cube. Then the vector space span{ $w_{ij}, w_{hh}^+ \mid ij \in \mathcal{L}, 2 \le h \le D-1$ } is invariant under multiplication by the adjacency matrix.

In this paper, we prove the following results. The first provides a new characterization of taut distance-regular graphs of odd diameter.

Theorem 1.3. Assume D is odd. Then the following are equivalent.

- (i) Γ is taut.
- (ii) $\Delta \neq 0$ and the vectors $\{w_{ii}, w_{i-1,i+1}, w_{i+1,i-1} \mid 1 \leq i \leq D-1\} \cup \{w_{ii}^+ \mid 2 \leq i \leq D-2\}$ form a basis for a subspace that is invariant under multiplication by the adjacency matrix.

To illustrate the meaning of Theorem 1.3, we prove the following result, which presents a combinatorial implication of Γ being taut.

Theorem 1.4. Assume Γ is taut with odd diameter. Then there exist real scalars η_i , ψ_i $(2 \le i \le D - 2)$ such that for all $z \in \Gamma_i(x) \cap \Gamma_i(y)$,

$$|\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z)| = \eta_i + \psi_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| \quad (2 \le i \le D-2).$$

Finally, we remark that this paper is part of a continuing effort to understand and classify the bipartite distance-regular graphs with at most two irreducible *T*-modules of endpoint two, both of which are thin (see Section 7 for formal definitions). Please see [4,14,12,13,15,16] for more work from this ongoing project. We remark that in [15], Terwilliger and the current author outlined a number of problems for further research. Theorem 1.3 above provides a solution to the first part of Problem 17.12 in [15].

2. Preliminaries

In this section, we review some basic definitions and results. For more information, the reader may consult the books of Bannai and Ito [1], Brouwer, Cohen, and Neumaier [2], and Godsil [10].

Let X denote a nonempty finite set. Let $Mat_X(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C} . Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C} . We observe $Mat_X(\mathbb{C})$ acts on V by left multiplication. We endow V with the Hermitian inner product \langle, \rangle which satisfies $\langle u, v \rangle = u^t \overline{v}$ for all $u, v \in V$, where t denotes transpose and – denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V. We remark that for all $B \in Mat_X(\mathbb{C})$ and for all $u, v \in V$,

$$\langle Bu, v \rangle = \langle u, \overline{B}^t v \rangle. \tag{2}$$

Throughout this paper, let $\Gamma = (X, R)$ denote a finite, undirected, connected graph without loops or multiple edges, with vertex set *X* and edge set *R*. Let ∂ denote the path-length distance function for Γ , and set $D := \max\{\partial(x, y) \mid x, y \in X\}$. We refer to *D* as the *diameter* of Γ . For all $x \in X$ and for all integers *i*, we set $\Gamma_i(x) := \{y \in X \mid \partial(x, y) = i\}$.

The graph Γ is said to be *distance-regular* whenever for all integers h, i, j ($0 \le h$, i, $j \le D$), and for all x, $y \in X$ with $\partial(x, y) = h$, the number

$$p_{ii}^h = |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of the choice of x and y. The numbers p_{ij}^h are called *intersection numbers* of Γ . It is conventional to abbreviate $c_i = p_{1i-1}^i$ $(1 \le i \le D)$, $a_i = p_{1i}^i$ $(0 \le i \le D)$, $b_i = p_{1i+1}^i$ $(0 \le i \le D-1)$, and to define $c_0 = 0$, $b_D = 0$. We note $a_0 = 0$ and $c_1 = 1$. We abbreviate $\mu = c_2$.

For the rest of this paper we assume Γ is distance-regular with diameter $D \ge 3$. We observe Γ is regular with valency $k = b_0$ and that $c_i + a_i + b_i = k$ ($0 \le i \le D$). For $0 \le i \le D$ we abbreviate $k_i = p_{ii}^0$, and observe

$$k_i = |\{z \in X \mid \partial(x, z) = i\}|,$$
(3)

where *x* is any vertex in *X*. Apparently $k_0 = 1$ and $k_1 = k$.

For each integer i ($0 \le i \le D$), let A_i denote the matrix in Mat_X(\mathbb{C}) with x, y entry

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x, y) = i, \\ 0 & \text{if } \partial(x, y) \neq i \end{cases} \quad (x, y \in X).$$

$$\tag{4}$$

For $0 \le i \le D$, we refer to A_i as the *i*th *distance matrix* of Γ . We abbreviate $A := A_1$ and note this is the adjacency matrix of Γ . Let M denote the subalgebra of $Mat_X(\mathbb{C})$ generated by A; M is known as the *Bose–Mesner algebra* of Γ . One can show that A_0, A_1, \ldots, A_D form a basis for M [2, p. 44].

Download English Version:

https://daneshyari.com/en/article/4647586

Download Persian Version:

https://daneshyari.com/article/4647586

Daneshyari.com