A new characterization of taut distance-regular graphs of odd diameter

Mark S. MacLean
Mathematics Department, Seattle University, 901 Twelfth Avenue, Seattle, WA 98122-1090, USA

ARTICLE INFO

Article history:

Received 31 May 2013
Received in revised form 1 October 2013
Accepted 5 October 2013
Available online 26 October 2013

Keywords:

Distance-regular graph
Association scheme
Bipartite graph
Taut graph

Abstract

We consider a bipartite distance-regular graph Γ with vertex set X, diameter $D \geq 4$, and valency $k \geq 3$. Let \mathbb{C}^{X} denote the vector space over \mathbb{C} consisting of column vectors with rows indexed by X and entries in \mathbb{C}. For $z \in X$, let \hat{z} denote the vector in \mathbb{C}^{X} with a 1 in the $z^{\text {th }}$ row and 0 in all other rows. For $0 \leq i \leq D$, let $\Gamma_{i}(z)$ denote the set of vertices in X that are distance i from z. Fix $x, y \in X$ with distance $\partial(x, y)=2$. For $0 \leq i, j \leq D$, we define $w_{i j}=\sum \hat{z}$, where the sum is over all vertices $z \in \Gamma_{i}(x) \cap \Gamma_{j}(y)$. Define a parameter Δ in terms of the intersection numbers by $\Delta=\left(b_{1}-1\right)\left(c_{3}-1\right)-\left(c_{2}-1\right) p_{22}^{2}$. For $2 \leq i \leq D-2$ we define vectors $w_{i i}^{+}=\sum\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{i-1}(z)\right| \hat{z}$, where the sum is over all vertices $z \in \Gamma_{i}(x) \cap$ $\Gamma_{i}(y)$. We define $W=\operatorname{span}\left\{w_{i j}, w_{h h}^{+} \mid 0 \leq i, j \leq D, 2 \leq h \leq D-2\right\}$. In [M. MacLean, An inequality involving two eigenvalues of a bipartite distance-regular graph, Discrete Math. 225 (2000) 193-216], MacLean defined what it means for Γ to be taut. Assume D is odd. We show Γ is taut if and only if $\Delta \neq 0$ and the subspace W is invariant under multiplication by the adjacency matrix.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this introduction, let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ (see Section 2 for formal definitions). In [14, Theorem 5.11], we showed that the intersection numbers of Γ satisfy

$$
\begin{equation*}
b_{3}\left((k-2) b_{2}-\theta_{1}^{2}(\mu-1)\right)\left((k-2) b_{2}-\theta_{d}^{2}(\mu-1)\right) \geq b_{1} \Delta\left(\theta_{1}^{2}-b_{2}\right)\left(b_{2}-\theta_{d}^{2}\right) \tag{1}
\end{equation*}
$$

where $d=\lfloor D / 2\rfloor$, and where $\Delta=\left(b_{1}-1\right)\left(c_{3}-1\right)-(\mu-1) p_{22}^{2}$. When $\Delta=0$, equality holds in (1) precisely when Γ is 2-homogeneous in the sense of Curtin [4] and Nomura [18]. We defined Γ to be taut whenever $\Delta \neq 0$ and equality holds in (1). In this paper, we obtain a new characterization of the taut condition in the case where D is odd.

Let X denote the vertex set of Γ, and let \mathbb{C}^{X} denote the vector space over \mathbb{C} consisting of column vectors with rows indexed by X and entries in \mathbb{C}. For $z \in X$, let \hat{z} denote the vector in \mathbb{C}^{X} with a 1 in the z th row and 0 in all other rows. For $0 \leq i \leq D$, let $\Gamma_{i}(z)$ denote the set of vertices in X that are distance i from z. Fix $x, y \in X$ with distance $\partial(x, y)=2$. For $0 \leq i, j \leq D$, we define $w_{i j}=\sum \hat{z}$, where the sum is over all vertices $z \in \Gamma_{i}(x) \cap \Gamma_{j}(y)$. For $2 \leq i \leq D-1$ we define vectors $w_{i i}^{+}=\sum \mid \Gamma_{1}(x) \cap$ $\Gamma_{1}(y) \cap \Gamma_{i-1}(z) \mid \hat{z}$, where the sum is over all vertices $z \in \Gamma_{i}(x) \cap \Gamma_{i}(y)$.

To provide context for our work, we now mention two theorems proven by Curtin and Miklavic, respectively. For notational purposes, let $\mathcal{L}=\{i j|0 \leq i, j \leq D, i+j \geq 2,|i-j| \in\{0,2\}\}$.

Theorem 1.1 ([4, Theorem 17]). The following are equivalent.
(i) Γ is 2-homogeneous.
(ii) The vector space $\operatorname{span}\left\{w_{i j} \mid i j \in \mathcal{L}\right\}$ is invariant under multiplication by the adjacency matrix.

[^0]Theorem 1.2 ([17, Theorems 11.4, 11.6]). Assume Γ is Q-polynomial (see [2] for the definition). Then (i)-(ii) hold below.
(i) Assume Γ is the antipodal quotient of the $2 D$-cube. Then the vector space $\operatorname{span}\left\{w_{i j}, w_{D-1, D-1}^{+} \mid i j \in \mathcal{L}\right\}$ is invariant under multiplication by the adjacency matrix.
(ii) Assume Γ is neither 2-homogeneous nor the antipodal quotient of the $2 D$-cube. Then the vector space span $\left\{w_{i j}, w_{h h}^{+} \mid i j \in\right.$ $\mathcal{L}, 2 \leq h \leq D-1\}$ is invariant under multiplication by the adjacency matrix.

In this paper, we prove the following results. The first provides a new characterization of taut distance-regular graphs of odd diameter.

Theorem 1.3. Assume D is odd. Then the following are equivalent.
(i) Γ is taut.
(ii) $\Delta \neq 0$ and the vectors $\left\{w_{i i}, w_{i-1, i+1}, w_{i+1, i-1} \mid 1 \leq i \leq D-1\right\} \cup\left\{w_{i i}^{+} \mid 2 \leq i \leq D-2\right\}$ form a basis for a subspace that is invariant under multiplication by the adjacency matrix.
To illustrate the meaning of Theorem 1.3, we prove the following result, which presents a combinatorial implication of Γ being taut.

Theorem 1.4. Assume Γ is taut with odd diameter. Then there exist real scalars $\eta_{i}, \psi_{i}(2 \leq i \leq D-2)$ such that for all $z \in$ $\Gamma_{i}(x) \cap \Gamma_{i}(y)$,

$$
\left|\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_{1}(z)\right|=\eta_{i}+\psi_{i}\left|\Gamma_{1}(x) \cap \Gamma_{1}(y) \cap \Gamma_{i-1}(z)\right| \quad(2 \leq i \leq D-2)
$$

Finally, we remark that this paper is part of a continuing effort to understand and classify the bipartite distance-regular graphs with at most two irreducible T-modules of endpoint two, both of which are thin (see Section 7 for formal definitions). Please see $[4,14,12,13,15,16]$ for more work from this ongoing project. We remark that in [15], Terwilliger and the current author outlined a number of problems for further research. Theorem 1.3 above provides a solution to the first part of Problem 17.12 in [15].

2. Preliminaries

In this section, we review some basic definitions and results. For more information, the reader may consult the books of Bannai and Ito [1], Brouwer, Cohen, and Neumaier [2], and Godsil [10].

Let X denote a nonempty finite set. Let $\operatorname{Mat}_{X}(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. Let $V=\mathbb{C}^{X}$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We observe $\operatorname{Mat}_{X}(\mathbb{C})$ acts on V by left multiplication. We endow V with the Hermitian inner product \langle,$\rangle which satisfies \langle u, v\rangle=u^{t} \bar{v}$ for all $u, v \in V$, where t denotes transpose and - denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V. We remark that for all $B \in$ Mat $_{X}(\mathbb{C})$ and for all $u, v \in V$,

$$
\begin{equation*}
\langle B u, v\rangle=\left\langle u, \bar{B}^{t} v\right\rangle \tag{2}
\end{equation*}
$$

Throughout this paper, let $\Gamma=(X, R)$ denote a finite, undirected, connected graph without loops or multiple edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function for Γ, and set $D:=\max \{\partial(x, y) \mid x, y \in X\}$. We refer to D as the diameter of Γ. For all $x \in X$ and for all integers i, we set $\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\}$.

The graph Γ is said to be distance-regular whenever for all integers $h, i, j(0 \leq h, i, j \leq D)$, and for all $x, y \in X$ with $\partial(x, y)$ $=h$, the number

$$
p_{i j}^{h}=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|
$$

is independent of the choice of x and y. The numbers $p_{i j}^{h}$ are called intersection numbers of Γ. It is conventional to abbreviate $c_{i}=p_{1 i-1}^{i}(1 \leq i \leq D), a_{i}=p_{1 i}^{i}(0 \leq i \leq D), b_{i}=p_{1 i+1}^{i}(0 \leq i \leq D-1)$, and to define $c_{0}=0, b_{D}=0$. We note $a_{0}=0$ and $c_{1}=1$. We abbreviate $\mu=c_{2}$.

For the rest of this paper we assume Γ is distance-regular with diameter $D \geq 3$. We observe Γ is regular with valency $k=b_{0}$ and that $c_{i}+a_{i}+b_{i}=k(0 \leq i \leq D)$. For $0 \leq i \leq D$ we abbreviate $k_{i}=\overline{p_{i i}^{0}}$, and observe

$$
\begin{equation*}
k_{i}=|\{z \in X \mid \partial(x, z)=i\}| \tag{3}
\end{equation*}
$$

where x is any vertex in X. Apparently $k_{0}=1$ and $k_{1}=k$.
For each integer $i(0 \leq i \leq D)$, let A_{i} denote the matrix in Mat ${ }_{X}(\mathbb{C})$ with x, y entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \tag{4}\\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

For $0 \leq i \leq D$, we refer to A_{i} as the i th distance matrix of Γ. We abbreviate $A:=A_{1}$ and note this is the adjacency matrix of Γ. Let M denote the subalgebra of Mat $_{X}(\mathbb{C})$ generated by $A ; M$ is known as the Bose-Mesner algebra of Γ. One can show that $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for $M[2, \mathrm{p} .44]$.

https://daneshyari.com/en/article/4647586

Download Persian Version:

https://daneshyari.com/article/4647586

Daneshyari.com

[^0]: E-mail address: macleanm@seattleu.edu.

