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a b s t r a c t

We establish in full generality the correspondence between saturated Horn inequalities
and clockwise overlays. This was known in generic cases by work of Knutson, Tao and
Woodward. We also prove that an extremal rigid measure forms a clockwise overlay with
itself. Finally, we provide a simple test for the rigidity of a measure derived from the
immersion of a tree.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The honeycomb formulation of the Littlewood–Richardson rule [5] leads to the consideration of a special class of
measures [1] defined in the plane. In this paper we consider three distinct but related questions arising in the study of
these measures.

The first question concerns the concept of a clockwise overlay. We recall from [4] that a measure µ, all of whose densities
are integers is naturally associated to a triple (A, B, C) of Hermitian matrices such that A + B + C = 0. The eigenvalues of
thesematrices are subject to a system of linear inequalities first proposed by Horn [3]. If this triple saturates one of the Horn
inequalities, it was shown in [5] that µ can, at least generically, be written as a sum µ = µ1 + µ2, where the pair (µ1, µ2)
is a clockwise overlay. Roughly (and generically) speaking, this means that the supports of the measures µ1 and µ2 only
intersect transversally and satisfy a certain orientation condition at the points of intersection. The case of general measures
µwas not considered in [5] and in fact clockwise overlays were not defined in nongeneric situations. A more general notion
of a clockwise overlay was introduced in [1]. The first result of this paper, Theorem 2.5, can be paraphrased as an extension
of the cited result in [5], along with its converse.

Theorem 1.1. A triple (A, B, C) associated to a measure µ saturates a Horn inequality if and only if µ = µ1 + µ2 and the pair
(µ1, µ2) is a clockwise overlay as defined in [1].

A related result, Theorem 2.6, states that the reflection of a clockwise overlay in a horizontal line is a counterclockwise
overlay. This is quite obvious in the generic case considered in [5]. Indeed, reflections change the orientation at transversal
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intersections of the supports. In the general case theremaybeno transversal intersections andnewcombinatorial arguments
must be used.

The collection of all measures µ is a cone, and the extremal structure of this cone is essential in setting up explicit
formulas for solving intersection problems in Grassmann manifolds, as seen in [1]. A special type of extremal measure is a
rigid tree measure, obtained from an immersion of a binary tree into the plane. The second question we consider concerns
the Horn inequalities for a triple (A, B, C) of Hermitian matrices associated with a rigid tree measure. Theorem 3.1 can be
reformulated as follows.

Theorem 1.2. Assume that µ is a rigid tree measure, and (A, B, C) is the associated triple of Hermitian matrices. Then all the
Horn inequalities for (A, B, C) are strict but (A ⊕ A, B ⊕ B, C ⊕ C) saturates some Horn inequality.

The number of saturated Horn inequalities is at least three, and it is usually quite substantial. This result is also true for
some nonrigid measures µ, but not for all of them.

The last question we consider is about the construction of rigid tree measures. It is very easy to construct measures
which arise from immersions of trees, but it seems quite difficult to decide when a measure constructed this way is rigid.
Theorem 4.1 is a test for identifying these rigid immersions. In order to obtain a rigid measure one must, roughly speaking,
make sure that branch points are of only two types, and that a consistent orientation is preserved. The test is easily applied.
It may not be effective if a complete enumeration of rigid tree measures (of fixed weight, for instance) is desired. Such
enumerations are best done by considering the duals of rigid tree measures. We plan to return to this question in the future.

2. Measures, puzzles, clockwise overlays, and saturation

Our main object of study is a special class of measures in the plane, which we now define. Start with three vectors
w1, w2, w3 of unit length in R2 such that w1 + w2 + w3 = 0.

Themeasuresµwe are interested in are supported in a finite union of lines parallel to one of these three vectors, and satisfy
the following two conditions.

(1) On each segment which does not intersect other segments in its support, µ is proportional to length; the constant of
proportionality is the density of µ on that segment. The density of µ will be considered to be zero on segments outside
its support.

(2) For any point A ∈ R2, we have

δ+

1 (µ, A) − δ−

1 (µ, A) = δ+

2 (µ, A) − δ−

2 (µ, A) = δ+

3 (µ, A) − δ−

3 (µ, A),

where δ±

j (µ, A) is the density of µ on the segment {A ± twj : t ∈ (0, ε)} for small ε.

Condition (2) implies that there are no points A for which exactly one of the densities δ±

j is different from zero, and it is
otherwise relevant only for the (finitely many) points for which at least three of these numbers are different from zero.
These are called branch points of the measure µ. When µ has no branch points, its support consists of one or more parallel
lines, on each of which the density is constant. We will generally assume the following condition.

(3) The measure µ has at least one branch point.

Under this additional assumption, the support ofµmust be connected, and itwill contain several half lines, each onepointing
in the direction of one of the vectors ±wj. We denote by M the class of measures µ satisfying (1)–(3) and

(4) each half line in the support of µ points in the direction of w1, w2, or w3.

Analogously M∗ consists of those measures µ which satisfy (1)–(3) and

(4∗) each half line in the support of µ points in the direction of −w1, −w2, or −w3.

Clearly M and M∗ are convex cones, and M ∩ M∗
= {0}.

Assume now that r is a positive number, and denote by △r the closed triangle with vertices 0, rw1, and r(w1 + w2).
The collection of measures µ ∈ M, all of whose branch points belong to △r , is denoted Mr . The class M∗

r ⊂ M∗ is defined
analogously.

Consider a measure µ ∈ Mr , and a point A ∈ ∂ △r . Assume that A belongs to the side of △r parallel to wj+1, where the
addition is done modulo 3. We say that A is an exit point of µ if µ assigns positive density to the half line {A + twj : t ≥ 0}.
The corresponding density is called an exit density ofµ. Themeasureµ is said to be rigid if there is no other measure ν ∈ Mr
which has the same exit points and exit densities as µ.

The preceding definitions are adapted by symmetry to measures in M∗
r .
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