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a b s t r a c t

Linear codes arising from the row span over any prime field Fp of the incidence matrices of
the odd graphsOk for k ≥ 2 are examined and all themain parameters obtained. A study of
the hulls of these codes for p = 2 yielded that for O2 (the Petersen graph), the dual of the
binary hull from an incidence matrix is the binary code from points and lines of the projec-
tive geometry PG3(F2), which leads to a correspondence between the edges and vertices of
O2 with the points and a collection of ten lines of PG3(F2), consistent with the codes.

The study also gives the dimension, the minimum weight, and the nature of the mini-
mum words, of the binary codes from adjacency matrices of the line graphs L(Ok).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent investigations of the codes from the |V | × |E| incidence matrices of k-regular connected graph Γ = (V , E) in, for
example [8,18,13,21,22], yielded observations that led to a more general approach for this study, using edge-connectivity of
graphs, in [6,5]. This showed that, under certain very broad conditions on Γ , the codes over any field Fp from an incidence
matrix G have the properties that: the dimension is |V | or |V | − 1; the minimum weight is k and the words of weight k are
the scalar multiples of the rows of G; there are nowords of weight i such that k < i < 2k−2; the words of weight 2k−2 are
the scalar multiples of the differences of two rows of G corresponding to adjacent vertices. Thus the graph can be retrieved
from the code. Such properties are reminiscent of the codes from finite projective planes: see [1, Chapter 6]. Codes from the
adjacencymatrices of graphs do not behave in such a uniformway. However, since for p = 2,GTG is an adjacencymatrix for
the line graph of Γ , L(Γ ), in such cases we can use the facts about the code from the incidence matrix for Γ for information
about the binary code from the adjacency matrix of L(Γ ), including the dimension and minimum weight. In particular, the
codes will not be trivial.

In this paper we examine these codes from incidence matrices of the odd graphs Ok, and deduce properties of the binary
codes from adjacencymatrices of the line graphs L(Ok) and also the hulls of these codes, where the hull of a code C is C ∩C⊥.
The odd graphs Ok for k ≥ 2 are the uniform subset graphs Γ (2k+1, k, 0)whose vertices are the subsets of size k of a set of
size 2k + 1, with two vertices being adjacent if the two k-subsets intersect in the empty set.1 They are thus (k + 1)-regular
graphs. Binary codes from the adjacency matrices of these graphs were examined in [10, Chapter 6]. Here we consider p-ary
codes from incidence matrices for these graphs, along with binary codes from the adjacency matrices of their line graphs,
and the hulls of these.

Ourmain results are collected in the following theorem,wherewe use the notation that if A is amatrix then Cp(A) denotes
the row span of A over the prime field Fp:
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1 Frequently denoted by Ok+1 in the literature.

0012-365X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.disc.2013.10.015

http://dx.doi.org/10.1016/j.disc.2013.10.015
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2013.10.015&domain=pdf
mailto:wfish@uwc.ac.za
mailto:keyj@clemson.edu
mailto:emwambene@uwc.ac.za
http://dx.doi.org/10.1016/j.disc.2013.10.015


W. Fish et al. / Discrete Mathematics 315–316 (2014) 102–111 103

Theorem 1. For k ≥ 2, let Gk = [gi,j] be a
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×

k+1
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incidence matrix for the odd graph Ok, and let Lk be an

adjacency matrix for the line graph L(Ok). For p any prime, let εp = 0 if p is odd, ε2 = 1. Then:

1. For any prime p, Cp(Gk) is a
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k


,


2k+1
k


− εp, k + 1


p
code.

If k ≥ 3, theminimumwords are the scalarmultiples of the rows of Gk, there are nowords ofweight i where k+1 < i < 2k,
and the words of weight 2k are the scalar multiples of the differences of two rows corresponding to two adjacent vertices.

If p = 2, the same is true for k = 2. For p odd, Cp(G2) has more words of weight 3.
2. If E(Gk) = ⟨gi,j − gi,m | 1 ≤ i ≤ 2k + 1⟩ over F2, then E(Gk) = C2(Lk). If k = 2l

− 1 for some l ≥ 2, then C2(Lk) = C2(Gk);

otherwise C2(Lk) has codimension 1 in C2(Gk) and is a
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− 2, 2k


2
code, with the words of weight 2k the

rows of Lk.
3. For all k ≥ 2,Hull(C2(Gk)) and Hull(C2(Lk)) have minimum weight at least 2k + 2, and either they are equal or one has

codimension 1 in the other. For k even, dim(Hull(C2(Gk))) =


2k−1

k


+2k−1

−1; for k odd, dim(Hull(C2(Gk))) =


2k
k−1


−1.

Further, for the strongly regular (10, 3, 0, 1) Petersen graph O2,

(Hull(C2(G2)))
⊥

= C2(G2) + C2(G2)
⊥

= C2(PG3,1(F2)) = H4,

whereHr denotes theHamming code of length2r
−1, ⟨Hull(C2(G2)), ȷ15⟩ = C2(PG3,2(F2)). There is a correspondence between

the edges and vertices of O2 and the 15 points and a set of ten lines of PG3(F2), consistent with the codewords. The edges of the
15 8-cycles of O2 are the supports of the non-zero words of H⊥

4 , with complements the 15 Fano planes PG2(F2) in PG3(F2).

General terminology is given in Section 2. The results collected in the theorem appear as propositions in Sections 3–6.
Some further general results about binary codes of adjacency matrices of line graphs and their hulls are shown in Sections 4
and 5. The results for the Petersen graph are in Section 6. This is followed by step-by-step procedures to correspond the
points of PG3(F2) with the edges of O2, and the converse operation of obtaining the graph from the points and a set of ten
lines of PG3(F2). Section 7 concerns the use of these codes for permutation decoding.

2. Background, terminology, and previous results

2.1. Designs and codes

The notation for designs and codes is as in [1]. An incidence structure D = (P , B, J), with point set P , block set B and
incidence J is a t-(v, k, λ) design if |P | = v, every block B ∈ B is incident with precisely k points, and every t distinct
points are together incident with precisely λ blocks. A design is symmetric if it has the same number of points as blocks.
The code CF (D) of the design D over the finite field F is the space spanned by the incidence vectors of the blocks over F . If
Q ⊆ P , then we will denote the incidence vector of Q by vQ . Thus CF (D) =


vB

| B ∈ B

, and is a subspace of FP . For any

w ∈ FP and P ∈ P , w(P) denotes the value of w at P . If F = Fp then the p-rank of D , written rankp(D), is the dimension
of Cp(D), writing Cp(D) for CF (D).

All the codes here are linear codes, and the notation [n, k, d]q is used for a q-ary code C of length n, dimension k, andmini-
mumweight d, where theweight wt (v) of a vector v is the number of non-zero coordinate entries. The support, Supp(v), of a
vector v is the set of coordinate positionswhere the entry in v is non-zero. A generatormatrix for C is a k×nmatrixwith rows
a basis for C , and the dual code C⊥ is the orthogonal under the standard inner product (, ), i.e. C⊥

= {v ∈ F n
| (v, c) = 0

for all c ∈ C}. If C = Cp(D), where D is a design, then C ∩ C⊥ is the hull of D or C . A check matrix for C is a generator matrix
for C⊥. The all-one vector will be denoted by ȷ, and is the vector with all entries equal to 1. The all-one vector of length m
is written ȷm. We call two linear codes isomorphic if they can be obtained from one another by permuting the coordinate
positions. An automorphism of a code C is an isomorphism from C to C . The automorphism group will be denoted by Aut(C).
An information set for C is the set of k coordinate positions of a set of k linearly independent columns of a generator matrix
for C . The remaining coordinates are called a check set.

For any finite field Fq of order q, the set of points and r-dimensional subspaces of anm-dimensional projective geometry
forms a 2-design which we will denote by PGm,r(Fq). The automorphism group of each of these designs is the full projective
semi-linear group, PΓ Lm+1(Fq) and is 2-transitive on points. The codes of these designs are subfield subcodes of the
generalised Reed–Muller codes: see [1, Chapter 5] for a full treatment.

2.2. Graphs and codes

The graphs, Γ = (V , E) with vertex set V and edge set E, are simple. If X, Y ∈ V and X and Y are adjacent, we write
X ∼ Y , and XY or [X, Y ] for the edge in E that they define. The set of neighbours of X ∈ V is denoted by N (X), and the valency
of X is |N (X)|.Γ is regular if all the vertices have the same valency. A path of length r from vertex X to vertex Y is a sequence
Xi, for 0 ≤ i ≤ r − 1, of distinct vertices with X = X0, Y = Xr−1, and Xi−1 ∼ Xi for 1 ≤ i ≤ r − 1. It is closed of length
r if X ∼ Y , in which case we write it (X0, . . . , Xr−1). The graph is connected if there is a path between any two vertices. A
perfect matching is a set S of disjoint edges such that every vertex is on exactly one member of S. An adjacency matrix A is a
|V |× |V |matrix with entries aij such that aij = 1 if vertices Xi and Xj are adjacent, and aij = 0 otherwise. An incidence matrix
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