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a b s t r a c t

Let ϕP (C6) (respectively, ϕT (C6)) be the minimum integer k with the property that every
3-polytope (respectively, every plane triangulation) with minimum degree 5 has a 6-cycle
with all vertices of degree at most k. In 1999, S. Jendrol’ and T. Madaras proved that
10 ≤ ϕT (C6) ≤ 11. It is also known, due to B. Mohar, R. Škrekovski and H.-J. Voss (2003),
that ϕP (C6) ≤ 107.

We prove that ϕP (C6) = ϕT (C6) = 11.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of incident edges. A k-vertex (k-face) is a vertex (face)
with degree k, a k+-vertex has degree at least k, etc. The minimum vertex degree of G is δ(G). We will drop the arguments
whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but d(x) ≥ 3 for
every vertex or face x. As proved by Steinitz [20], the 3-connected plane graphs are planar representations of the convex
three-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class M5 of NPMs with δ = 5 and its subclasses P5 of 3-polytopes and T5 of plane
triangulations. A cycle on k vertices is denoted by Ck, and Sk stands for a k-star centered at a 5-vertex. (So, Sk is a subgraph
ofM5 on a 5-vertex and k vertices adjacent to it, where 0 ≤ k ≤ 5.)

In 1904, Wernicke [21] proved that M5 ∈ M5 implies, in M5, the presence of a vertex of degree 5 adjacent to a vertex
of degree at most 6. This result was strengthened by Franklin [8] in 1922 to the existence of a vertex of degree 5 with two
neighbors of degree atmost 6. In 1940, Lebesgue [15, p. 36] gave an approximate description of the neighborhoods of vertices
of degree 5 in T5.

The weight wM(H) is the maximum overM5 ∈ M5 of the minimum degree-sum of the vertices of H over subgraphs H of
M5. The weights wP(H) and wT (H) are defined similarly for P5 and T5, respectively.

The bounds wM(S1) ≤ 11 (Wernicke [21]) and wM(S2) ≤ 17 (Franklin [8]) are tight. It was proved by Lebesgue [15] that
wM(S3) ≤ 24 and wM(S4) ≤ 31, which was improved much later to the following tight bounds: wM(S3) ≤ 23 (Jendrol’
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and Madaras [10]) and wM(S4) ≤ 30 (Borodin and Woodall [6]). Note that wM(S3) ≤ 23 readily implies wM(S2) ≤ 17
and immediately follows from wM(S4) ≤ 30 (it suffices to delete a vertex of maximum degree from a star of the minimum
weight).

It follows from Lebesgue [15, p. 36] thatwT (C3) ≤ 18. In 1963, Kotzig [14] gave another proof of this fact and conjectured
that wT (C3) ≤ 17. (The bound 17 is easily shown to be tight.)

In 1989, Kotzig’s conjecture was confirmed by Borodin [2] in a more general form, by proving wM(C3) = 17. Another
consequence of this result is the confirming of a conjecture of Grünbaum [9] from 1975 that the cyclic connectivity (defined
as the minimum number of edges to be deleted from a graph to obtain two components each containing a cycle) of every
5-connected planar graph is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [19]).

It also follows from Lebesgue [15, p. 36] that wT (C4) ≤ 26 and wT (C5) ≤ 31. In 1998, Borodin and Woodall [6] proved
wT (C4) = 25 and wT (C5) = 30.

Now let ϕM(H) (ϕP(H), ϕT (H)) be the minimum integer k with the property that every normal plane map (3-polytope,
plane triangulation) with minimum degree 5 has a copy of H with all vertices of degree at most k.

It follows from Franklin [8] that ϕM(S2) = 6. From wM(C3) = 17 (Borodin [2]), we have ϕM(C3) = 7. In 1996, Jendrol’
andMadaras [10] proved ϕM(S4) = 10 and ϕT (C4) = ϕ(C5) = 10. R. Soták (personal communication; see surveys of Jendrol’
and Voss [12,13]) proved ϕP(C4) = 11 and ϕP(C5) = 10.

In 1999, Jendrol’ et al. [11] obtained the following bounds: 10 ≤ ϕT (C6) ≤ 11, 15 ≤ ϕT (C7) ≤ 17, 15 ≤ ϕT (C8) ≤

29, 19 ≤ ϕT (C9) ≤ 41, and ϕT (Cp) = ∞ whenever p ≥ 11. Madaras and Soták [17] proved 20 ≤ ϕT (C10) ≤ 415.
For the broader class P5 (an easy induction proof shows that every planar triangulation on at least four vertices is

3-connected), it is known that 10 ≤ ϕP(C6) ≤ 107 due to Mohar et al. [18] (in fact, this bound is proved in [18] for all
3-polytopes with δ ≥ 4 in which no 4-vertex is adjacent to a 4-vertex), and ϕP(C7) ≤ 359 is due to Madaras et al. [16].

The purpose of our note is to prove that ϕP(C6) = ϕT (C6) = 11. This answers a question raised by Jendrol’ et al. [11].

Theorem 1. Every 3-polytope with minimum degree 5 has a 6-cycle such that each of its vertices has degree at most 11, and this
bound is tight.

Other structural results onM5, some of which have application to coloring, can be found in the papers alreadymentioned
and in [3,4,7,16–18].

One of the ideas used in our proof is to look for a suitable 6-cycle not in the whole graph but in a carefully chosen portion
of it. A similar approach to coloring problems on plane graphs is described in a survey [5, pp. 520–521], and it has been used
by us several times, beginning with [1].

2. Proving the tightness of Theorem 1

We transform the octahedron (the 4-regular plane triangulation on six vertices) to a plane triangulation in which every
6-cycle goes through a vertex of degree at least 11, replacing each of the eight 3-faces of the octahedron by the configuration
shown in Fig. 1.

More specifically, half of the image of every edge (partly invisible) of the octahedron starts at an ‘‘angular’’ 12-vertex, goes
through an 11-vertex, cuts an edge between two 5-vertices, then goes through two 5-vertices, cuts another edge between
two 5-vertices, and ends in a 12-vertex, the mid-point of the image of the edge. The graph obtained has only 5-, 11-, and 12-
vertices. Furthermore, every 5-vertex belongs to a blue (shadowed) triangle. It is easily seen that the subgraph on 5-vertices
does not contain 6-cycles.

Note that we could use instead of the octahedron any plane triangulation with δ ≥ 4 to obtain a plane triangulation with
the desired property.

3. Proving the upper bound in Theorem 1

Suppose G′ is a counterexample to the main statement of Theorem 1. Thus G′ is a 3-polytope with δ = 5 in which no
6-cycle avoids a 12+-vertex.

By Euler’s formula |V ′
| − |E ′

| + |F ′
| = 2 for G′, we have

v∈V ′

(d(v) − 4) +


f∈F ′

(d(f ) − 4) = −8. (1)

This implies that G′ has a 3-face. So we may assume that the external face of G′ is bounded by a 3-cycle with the vertex
set T ′.

A special triangle T ∗
= t1t2t3 of G′ is a 3-cycle of G′ with the fewest vertices inside. We define G to be the subgraph of G′

induced by the vertices inside T ∗. The vertices of G are internal, and the vertices t1, t2, and t3 are special.
By G∗∗ we denote the subgraph of G′ induced by the vertices of G ∪ T ∗. In particular, T ∗

= T ′ when G∗∗
= G′. In both

cases, T ∗ is the boundary ∂(f∞) of the external face f∞ of G∗∗.
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