Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11

O.V. Borodin ${ }^{\text {a,b }}$, A.O. Ivanova ${ }^{\text {c,* }}$, A.V. Kostochka ${ }^{\text {d,a }}$
${ }^{\text {a }}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\text {b }}$ Novosibirsk State University, Novosibirsk 630090, Russia
${ }^{\text {c }}$ Ammosov North-Eastern Federal University, Yakutsk, 677891, Russia
${ }^{\text {d }}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

ARTICLE INFO

Article history:

Received 2 July 2013
Received in revised form 15 October 2013
Accepted 21 October 2013
Available online 7 November 2013

Keywords:

Planar graph
Plane map
Structure properties
3-polytope
Weight

Abstract

Let $\varphi_{P}\left(C_{6}\right)$ (respectively, $\varphi_{T}\left(C_{6}\right)$) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has a 6 -cycle with all vertices of degree at most k. In 1999, S. Jendrol' and T. Madaras proved that $10 \leq \varphi_{T}\left(C_{6}\right) \leq 11$. It is also known, due to B. Mohar, R. Škrekovski and H.-J. Voss (2003), that $\varphi_{P}\left(C_{6}\right) \leq 107$.

We prove that $\varphi_{P}\left(C_{6}\right)=\varphi_{T}\left(C_{6}\right)=11$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The degree $d(x)$ of a vertex or face x in a plane graph G is the number of incident edges. A k-vertex (k-face) is a vertex (face) with degree k, a k^{+}-vertex has degree at least k, etc. The minimum vertex degree of G is $\delta(G)$. We will drop the arguments whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but $d(x) \geq 3$ for every vertex or face x. As proved by Steinitz [20], the 3-connected plane graphs are planar representations of the convex three-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class $\mathbf{M}_{\mathbf{5}}$ of NPMs with $\delta=5$ and its subclasses $\mathbf{P}_{\mathbf{5}}$ of 3-polytopes and $\mathbf{T}_{\mathbf{5}}$ of plane triangulations. A cycle on k vertices is denoted by C_{k}, and S_{k} stands for a k-star centered at a 5 -vertex. (So, S_{k} is a subgraph of M_{5} on a 5 -vertex and k vertices adjacent to it, where $0 \leq k \leq 5$.)

In 1904, Wernicke [21] proved that $M_{5} \in \mathbf{M}_{5}$ implies, in M_{5}, the presence of a vertex of degree 5 adjacent to a vertex of degree at most 6. This result was strengthened by Franklin [8] in 1922 to the existence of a vertex of degree 5 with two neighbors of degree at most 6. In 1940, Lebesgue [15, p. 36] gave an approximate description of the neighborhoods of vertices of degree 5 in \mathbf{T}_{5}.

The weight $w_{M}(H)$ is the maximum over $M_{5} \in \mathbf{M}_{\mathbf{5}}$ of the minimum degree-sum of the vertices of H over subgraphs H of M_{5}. The weights $w_{P}(H)$ and $w_{T}(H)$ are defined similarly for $\mathbf{P}_{\mathbf{5}}$ and $\mathbf{T}_{\mathbf{5}}$, respectively.

The bounds $w_{M}\left(S_{1}\right) \leq 11$ (Wernicke [21]) and $w_{M}\left(S_{2}\right) \leq 17$ (Franklin [8]) are tight. It was proved by Lebesgue [15] that $w_{M}\left(S_{3}\right) \leq 24$ and $w_{M}\left(S_{4}\right) \leq 31$, which was improved much later to the following tight bounds: $w_{M}\left(S_{3}\right) \leq 23$ (Jendrol'

[^0]and Madaras [10]) and $w_{M}\left(S_{4}\right) \leq 30$ (Borodin and Woodall [6]). Note that $w_{M}\left(S_{3}\right) \leq 23$ readily implies $w_{M}\left(S_{2}\right) \leq 17$ and immediately follows from $w_{M}\left(S_{4}\right) \leq 30$ (it suffices to delete a vertex of maximum degree from a star of the minimum weight).

It follows from Lebesgue [15, p. 36] that $w_{T}\left(C_{3}\right) \leq 18$. In 1963, Kotzig [14] gave another proof of this fact and conjectured that $w_{T}\left(C_{3}\right) \leq 17$. (The bound 17 is easily shown to be tight.)

In 1989, Kotzig's conjecture was confirmed by Borodin [2] in a more general form, by proving $w_{M}\left(C_{3}\right)=17$. Another consequence of this result is the confirming of a conjecture of Grünbaum [9] from 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph to obtain two components each containing a cycle) of every 5 -connected planar graph is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [19]).

It also follows from Lebesgue [15, p. 36] that $w_{T}\left(C_{4}\right) \leq 26$ and $w_{T}\left(C_{5}\right) \leq 31$. In 1998, Borodin and Woodall [6] proved $w_{T}\left(C_{4}\right)=25$ and $w_{T}\left(C_{5}\right)=30$.

Now let $\varphi_{M}(H)\left(\varphi_{P}(H), \varphi_{T}(H)\right)$ be the minimum integer k with the property that every normal plane map (3-polytope, plane triangulation) with minimum degree 5 has a copy of H with all vertices of degree at most k.

It follows from Franklin [8] that $\varphi_{M}\left(S_{2}\right)=6$. From $w_{M}\left(C_{3}\right)=17$ (Borodin [2]), we have $\varphi_{M}\left(C_{3}\right)=7$. In 1996, Jendrol' and Madaras [10] proved $\varphi_{M}\left(S_{4}\right)=10$ and $\varphi_{T}\left(C_{4}\right)=\varphi\left(C_{5}\right)=10$. R. Soták (personal communication; see surveys of Jendrol' and Voss $[12,13])$ proved $\varphi_{P}\left(C_{4}\right)=11$ and $\varphi_{P}\left(C_{5}\right)=10$.

In 1999, Jendrol' et al. [11] obtained the following bounds: $10 \leq \varphi_{T}\left(C_{6}\right) \leq 11,15 \leq \varphi_{T}\left(C_{7}\right) \leq 17,15 \leq \varphi_{T}\left(C_{8}\right) \leq$ 29, $19 \leq \varphi_{T}\left(C_{9}\right) \leq 41$, and $\varphi_{T}\left(C_{p}\right)=\infty$ whenever $p \geq 11$. Madaras and Soták [17] proved $20 \leq \varphi_{T}\left(C_{10}\right) \leq 415$.

For the broader class $\mathbf{P}_{\mathbf{5}}$ (an easy induction proof shows that every planar triangulation on at least four vertices is 3-connected), it is known that $10 \leq \varphi_{P}\left(C_{6}\right) \leq 107$ due to Mohar et al. [18] (in fact, this bound is proved in [18] for all 3-polytopes with $\delta \geq 4$ in which no 4 -vertex is adjacent to a 4 -vertex), and $\varphi_{P}\left(C_{7}\right) \leq 359$ is due to Madaras et al. [16].

The purpose of our note is to prove that $\varphi_{P}\left(C_{6}\right)=\varphi_{T}\left(C_{6}\right)=11$. This answers a question raised by Jendrol' et al. [11].
Theorem 1. Every 3-polytope with minimum degree 5 has a-cycle such that each of its vertices has degree at most 11, and this bound is tight.

Other structural results on \mathbf{M}_{5}, some of which have application to coloring, can be found in the papers already mentioned and in [3,4,7,16-18].

One of the ideas used in our proof is to look for a suitable 6-cycle not in the whole graph but in a carefully chosen portion of it. A similar approach to coloring problems on plane graphs is described in a survey [5, pp. 520-521], and it has been used by us several times, beginning with [1].

2. Proving the tightness of Theorem 1

We transform the octahedron (the 4-regular plane triangulation on six vertices) to a plane triangulation in which every 6 -cycle goes through a vertex of degree at least 11, replacing each of the eight 3-faces of the octahedron by the configuration shown in Fig. 1.

More specifically, half of the image of every edge (partly invisible) of the octahedron starts at an "angular" 12-vertex, goes through an 11-vertex, cuts an edge between two 5-vertices, then goes through two 5-vertices, cuts another edge between two 5 -vertices, and ends in a 12-vertex, the mid-point of the image of the edge. The graph obtained has only $5-, 11-$, and 12vertices. Furthermore, every 5 -vertex belongs to a blue (shadowed) triangle. It is easily seen that the subgraph on 5-vertices does not contain 6-cycles.

Note that we could use instead of the octahedron any plane triangulation with $\delta \geq 4$ to obtain a plane triangulation with the desired property.

3. Proving the upper bound in Theorem 1

Suppose G^{\prime} is a counterexample to the main statement of Theorem 1 . Thus G^{\prime} is a 3-polytope with $\delta=5$ in which no 6 -cycle avoids a 12^{+}-vertex.

By Euler's formula $\left|V^{\prime}\right|-\left|E^{\prime}\right|+\left|F^{\prime}\right|=2$ for G^{\prime}, we have

$$
\begin{equation*}
\sum_{v \in V^{\prime}}(d(v)-4)+\sum_{f \in F^{\prime}}(d(f)-4)=-8 \tag{1}
\end{equation*}
$$

This implies that G^{\prime} has a 3-face. So we may assume that the external face of G^{\prime} is bounded by a 3-cycle with the vertex set T^{\prime}.

A special triangle $T^{*}=t_{1} t_{2} t_{3}$ of G^{\prime} is a 3-cycle of G^{\prime} with the fewest vertices inside. We define G to be the subgraph of G^{\prime} induced by the vertices inside T^{*}. The vertices of G are internal, and the vertices t_{1}, t_{2}, and t_{3} are special.

By $G^{* *}$ we denote the subgraph of G^{\prime} induced by the vertices of $G \cup T^{*}$. In particular, $T^{*}=T^{\prime}$ when $G^{* *}=G^{\prime}$. In both cases, T^{*} is the boundary $\partial\left(f_{\infty}\right)$ of the external face f_{∞} of $G^{* *}$.

https://daneshyari.com/en/article/4647599

Download Persian Version:
https://daneshyari.com/article/4647599

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), kostochk@math.uiuc.edu (A.V. Kostochka).

