

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 2011-2017

www.elsevier.com/locate/disc

Clique partitions of complements of forests and bounded degree graphs

Note

Michael Cavers^a, Jacques Verstraëte^b

^aDepartment of Combinatorics & Optimization, University of Waterloo, 200 University Avenue West, Waterloo, Ont., Canada N2L 3G1 ^bDepartment of Mathematics & Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Que., Canada H2A 3K6

> Received 2 October 2006; received in revised form 17 April 2007; accepted 19 April 2007 Available online 5 May 2007

Abstract

In this paper, we prove that for any forest $F \subset K_n$, the edges of $E(K_n) \setminus E(F)$ can be partitioned into $O(n \log n)$ cliques. This extends earlier results on clique partitions of the complement of a perfect matching and of a hamiltonian path in K_n .

In the second part of the paper, we show that for *n* sufficiently large and any $\varepsilon \in (0, 1]$, if a graph *G* has maximum degree $O(n^{1-\varepsilon})$, then the edges of $E(K_n) \setminus E(G)$ can be partitioned into $O(n^{2-(1/2)\varepsilon} \log^2 n)$ cliques provided there exist certain Steiner systems. Furthermore, we show that there are such graphs *G* for which $\Omega(\varepsilon^2 n^{2-2\varepsilon})$ cliques are required in every clique partition of $E(K_n) \setminus E(G)$.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Clique partitions; Steiner systems; Probabilistic method

1. Introduction

A *clique partition* of a graph *G* is a collection of nontrivial complete subgraphs of *G* (called cliques) that partition the edge set of *G*. In this paper, we study the problem of finding clique partitions of $K_n \setminus F$, where $F \subset K_n$ is a forest or a graph of maximum degree Δ . Here $K_n \setminus F$ refers to the graph on $V(K_n)$ consisting of all edges of K_n which are not in *F*, and is called the *complement of F*. We denote by $cp(K_n \setminus F)$ the *clique partition number* of $K_n \setminus F$, which is the smallest number of cliques partitioning $E(K_n) \setminus E(F)$. Any further notation not defined here is found in Bondy and Murty [4].

It was Orlin [8] who first asked about the asymptotics of the clique partition number of the complement of a perfect matching. Wallis [9] showed that for any fixed $\varepsilon > 0$, the clique partition number of the complement of a perfect matching is $o(n^{1+\varepsilon})$. Later, Gregory et al. [7] improved this result to $O(n \log \log n)$, and conjectured that it is asymptotic to *n*. Using the same argument as for the complement of a perfect matching, Wallis [10] proves that the same bound holds for the complement of a Hamiltonian path in K_n . Wallis [10] also notes that this technique can be extended to the complement of *H*, where every vertex of *H* is of degree one or two. In the case that *F* is a forest, we prove the following theorem:

Theorem 1. Let $F \subset K_n$ be a forest. Then $cp(K_n \setminus F) = O(n \log n)$.

E-mail address: mscavers@gmail.com (M. Cavers).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.04.041

Note that the forest *F* may not necessarily be a spanning forest of K_n . The proof of Theorem 1 will be given in Section 2. We are not aware of any lower bounds for $cp(K_n \setminus F)$ which are not of order of magnitude O(n); we conjecture that there exist forests for which

$$\frac{\operatorname{cp}(K_n \setminus F)}{n} \to \infty.$$

In the second part of the paper, we are interested in estimating clique partition numbers of dense graphs—we wish to find bounds on $cp(K_n \setminus G)$ when G has maximum degree Δ . An early result of Erdős and de Bruijn [5] shows that $cp(K_n \setminus K_2) = n - 1$ for $n \ge 3$, with equality only for clique partitions consisting of n - 2 complete graphs of order two and one complete graph of order n - 2. Using projective planes, Wallis [10] showed if H is a graph with at most \sqrt{n} vertices, then $K_n \setminus H$ can be partitioned into O(n) cliques. A projective plane is a particular example of a family of sets called a Steiner system. We recall that a *Steiner* (n, k)-system is a family of k-element subsets of an n-element set such that each pair of elements appears in exactly one of the k-element sets. In other words, a Steiner (n, k)-system provides a clique partition of K_n into cliques of size k; in particular $\binom{n}{2} / \binom{k}{2}$ cliques are present in this partition. Conditional on the existence of Steiner systems with certain parameters, we give bounds on $cp(K_n \setminus G)$ for graphs G with asymptotically prescribed maximum degree $\Delta(G)$:

Theorem 2. Let G be a graph on n vertices, let $k = \lfloor (\frac{n}{2\Delta})^{1/2} \rfloor$, and suppose there exists a Steiner (n, k)-system. Then, provided that $\Delta(G) = o(\frac{n}{\log^4 n})$ as n tends to infinity,

$$cp(K_n \setminus G) = O(n^{3/2} \varDelta(G)^{1/2} \log^2 n).$$

Furthermore, if $\frac{n-\Delta}{\log n} \to \infty$, then as $n \to \infty$, almost every Δ -regular graph G on n vertices has

$$\operatorname{cp}(K_n \setminus G) = \Omega\left(\varDelta^2 \left[\frac{\log n}{\log \varDelta} - 1 \right]^2 \right).$$

For the purpose of comparison, if $\Delta = n^{1-\varepsilon}$ in Theorem 2, then the upper bound for $cp(K_n \setminus G)$ is of order $n^{2-(1/2)\varepsilon} \log^2 n$ whereas the lower bound is of order $n^{2-2\varepsilon}$. It would be interesting to determine whether either of these bounds is tight in order of magnitude. We conclude with the following conjecture:

Conjecture 3. Let *G* be a graph on *n* vertices with maximum degree Δ . Then $cp(K_n \setminus G) = O(\Delta n \log n)$. Furthermore, if $\Delta = o(n)$, then $cp(K_n \setminus G) = o(n^2)$.

2. Complements of forests

To prove Theorem 1, we will restrict our attention to trees and show $cp(K_n \setminus T) = O(n \log n)$ for any tree T on n vertices. Theorem 1 follows from this statement, since every forest $F \subset K_n$ is contained in a spanning tree $T \subset K_n$, and

 $\operatorname{cp}(K_n \setminus F) \leq \operatorname{cp}(K_n \setminus T) + n - 1.$

To prove the claim $cp(K_n \setminus T) = O(n \log n)$, we make use of the following definition.

Definition 4. A *tree partition* of a graph *G* is a collection of trees $\{T_1, T_2, ..., T_r\}$ of *G* (not necessarily spanning trees of *G*) such that every edge of *G* is in exactly one tree

$$E(G) = \bigcup_{i=1}^{r} E(T_i),$$

and for all $i \neq j$, $|V(T_i) \cap V(T_j)| \leq 1$.

Download English Version:

https://daneshyari.com/en/article/4649707

Download Persian Version:

https://daneshyari.com/article/4649707

Daneshyari.com