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a b s t r a c t

In this paper we consider the critical group of finite connected
graphswhich admit harmonic actions by the dihedral groupDn, ex-
tending earlier work by the author and Criel Merino. In particular,
we show that the critical group of such a graph can be decomposed
in terms of the critical groups of the quotients of the graph by cer-
tain subgroups of the automorphism group. This is analogous to a
theorem of Kani and Rosen which decomposes the Jacobians of al-
gebraic curves with a Dn-action.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This note picks up where the author’s previous article with Criel Merino [7] left off. In particular,
that article added to the growing literature (see, for example: [1,6,11]) exploring the analogy between
the Jacobians of curves and the Jacobians of graphs, also known as critical groups. Those papers, and
others in the literature, prove theorems about Jacobians of graphs that are equivalent to theorems
from algebraic geometry such as the Riemann–Roch Theorem and the Hurwitz bound on the size
of the automorphism group. Our article looked at a theorem of Kani and Rosen [9] that shows a
relationship between the Jacobians of curves that admit certain group actions and the Jacobians of
the quotients of that curve and explored whether their theorem carried over to the graph theoretic
setting. In particular, we showedhow to decompose the Jacobian of a graph that had a harmonic action
by the dihedral group Dn in terms of the Jacobians of its quotients. However, our results required
the additional hypothesis that the Dn-orbits of the vertices each had precisely n or 2n elements. This
hypothesis is very restrictive, and in this note, we remove that condition and prove the following
theorem about Jacobians of graphs that admit a harmonic action of Dn independent of the size of the
orbits.
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Theorem 1.1. Let G be a graph admitting a harmonic action of the dihedral group Dn generated by the
involutions σ1 and σ2, and define an orbit of the vertices to be inertial if any element of the orbit is fixed
by either σ1 or σ2. For all primes p - 2n, we have that the p-Sylow subgroups of the two groups

Jac(G/σ1) ⊕ Jac(G/σ2) ⊕ Jac(G/σ1σ2) ⊕ Z/nZ

and

Jac(G) ⊕ Jac(G/Dn)
2
⊕

 
O inertial

(Z/
n

|O|
Z)


are isomorphic. If p|2n then these p-Sylow subgroups have the same order but may not be isomorphic.

We believe this theorem is of interest largely because it helps strengthen the connection between
the study of Jacobians of graphs and Jacobians of curves. Moreover, it is computationally useful
because the quotient graphs G/σ1,G/σ2, and G/σ1σ2 all have fewer vertices than G, and therefore
computing their Jacobians directly from the Laplacianmatrixwill be faster.When n is oddwewill get a
further efficiency from the fact that σ1 and σ2 are conjugate elements and thus Jac(G/σ1) ∼= Jac(G/σ2).
In particular, given that best algorithms for computing the critical group of a graph with k vertices
take somewhat less than O(k3) time [8], this approach could speed up the computation by a factor of
roughly 8.

We note that when n = 2, we are looking at the case where our graph admits a harmonic action
of the Klein-Four group, and Theorem 1.1 simplifies as follows:

Corollary 1.2. Let K = {id, σ1, σ2, σ3} ∼= (Z/2Z)2 and let G be a graph which admits a harmonic
K-action so that there are exactly o points fixed by the entire group. Then for any prime p ≠ 2, the
p-part of the finite abelian group Jac(G) ⊕ (Jac(G/K))2 is isomorphic to the p-part of the direct sum
Jac(G/σ1) ⊕ Jac(G/σ2) ⊕ Jac(G/σ3). Moreover, if the 2-part of Jac(G/σ1) ⊕ Jac(G/σ2) ⊕ Jac(G/σ3)
is of order 2n then the 2-part of Jac(G) ⊕ (Jac(G/K))2 has order 2n−o+1.

In the next section we introduce notation that we will use in our proof and discuss the general
structure of our argument, which is very similar to the techniques used in [7]. The following sections
prove some technical results about sets of divisors on graphs that admit harmonic dihedral actions.
Section 6 combines these results in order to describe the Jacobian of our graph in terms of the Jacobians
of its quotients. A final section gives additional examples, including a proof of Corollary 1.2.

2. Notation and structure

Throughout this paper, we assume that G is a graph that admits a harmonic action of the dihedral
group Dn generated by two involutions σ1 and σ2 andwe set τ = σ1σ2 so that τ is an element of order
n. We recall that the action is harmonic if anytime an element of the group fixes an edge it switches
the two vertices that are endpoints of that edge. Given a Dn-orbit O of vertices on the graph G, we
wish to define the following two invariants: the type and the index.

Definition 2.1. For each orbit O of the vertices of G under a harmonic Dn-action, we define it to be
either Type I, II, or III as follows:

• A Type I orbit is an orbit O so that σ2 fixes some element of O. We let t1 be the number of orbits of
Type I.

• A Type II orbit is an orbit O so that σ2 does NOT fix any element, but σ1 does fix an element of O.
We let t2 be the number of orbits of Type II.

• A Type III orbit is an orbit O so that neither σ1 or σ2 fix any elements of O. We let t3 be the number
of orbits of Type III.

Going along with the definition given in Theorem 1.1, we will refer to Type I and Type II orbits
jointly as ‘inertial’, and we note that these are orbits on which the subgroup ⟨τ ⟩ acts transitively.
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