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a b s t r a c t

Given positive integers h and k, denote by r(h, k) the smallest
integer n such that in any k-coloring of the edges of a tournament
on more than n vertices there is a monochromatic copy of every
oriented tree on h vertices. We prove that r(h, k) = (h− 1)k for all
k sufficiently large (k = Θ(h log h) suffices). The bound (h− 1)k is
tight. The related parameter r∗(h, k) where some color contains all
oriented trees is asymptotically determined. Values of r(h, 2) for
some small h are also established.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An oriented graph is a digraph such that for every two distinct vertices u, v at most one of the
ordered pairs (u, v) or (v, u) is an edge. Stated otherwise, an oriented graph is obtained by assigning
a direction to each edge of an undirected graph. The undirected graph is also called the underlying
graph. A tournament is an oriented graph whose underlying graph is complete. An oriented tree is an
oriented graph whose underlying graph is a tree.

A seminal theorem, so called the Gallai–Roy Theoremasserts that any oriented graph has a directed
pathwhose order is at least as large as the chromatic number of its underlying graph. This theoremwas
obtained independently byGallai [7], Hasse [9], Roy [13], andVitaver [14].Wenote that theGallai–Roy
Theorem generalizes Redei’s Theorem [12] that states that any tournament has a Hamilton path.

By observing that in any edge coloring of a complete graph with more than
k

i=1(hi − 1) vertices
with k colors, there is a color i that induces a graphwhose chromatic number is at least hi, Gyárfás and
Lehel [8], Bermond [2], and Chvátal [4] deduced that in any k-coloring of the edges of a tournament
on more than

k
i=1(hi− 1) vertices, there is a directed path of order hi, all of whose edges are colored

i. They also observed that there is a simple construction showing that the bound
k

i=1(hi − 1) is
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tight. The diagonal case, where all hi are equal, is equivalently stated as the following Ramsey-type
parameter. Let Ph denote the directed path of order h. Given a positive integer h, let r(Ph, k) be the
smallest integer n such that in any k-coloring of the edges of a tournament with more than n vertices,
there is a monochromatic Ph. The aforementioned result states that r(Ph, k) = (h− 1)k.

A natural question which follows is the value of the corresponding Ramsey number of oriented
trees other than the directed path. In particular, what bound guarantees amonochromatic copy of any
oriented tree on h vertices? Already the case k = 1 is interesting, and, in fact, notoriously difficult.
A famous conjecture of Sumner from 1971 states that any tournament on 2h − 2 vertices contains
any oriented tree on h vertices (we always assume h ≥ 2 to avoid the trivial case). If true, then this is
best possible since a regular tournament on 2h− 3 vertices has all in-degrees and out-degrees equal
to h − 2. It therefore has no copy of Sh, the out-directed star on h vertices. Sumner’s conjecture is
still open, though it has recently been established for very large h by Kuhn, Mycroft, and Osthus [11].
The best bound that applies to all h is 3h − 3 proved by El Sahili [6] based on a method of Havet and
Thomassé [10].

Let r(h, k) be the smallest integer n such that in any k-coloring of the edges of a tournament with
more than n vertices, there is a monochromatic copy of every oriented tree on h vertices. Determining
r(h, 1) is thus equivalent to solving Sumner’s conjecture. The discussion in the previous paragraphs
implies, in particular, that r(h, k) ≥ (h−1)k, that 3h−4 ≥ r(h, 1) ≥ 2h−3 and that r(h, 1) = 2h−3
for all h sufficiently large. Our first main result is the following.

Theorem 1. Let h ≥ 2 be a positive integer and let k be a positive integer satisfying (1+ 1/(h− 2))k >
2(h − 2)k + 1. Then, for every n > (h − 1)k, any edge coloring of an n-vertex tournament with k colors
contains a monochromatic copy of every oriented tree on h vertices. In particular, r(h, k) = (h− 1)k.

The fact that Theorem 1 requires some lower bound on k in order for the value (h− 1)k to hold is, of
course, necessary as shown already for the case k = 1. It is thus of some interest to determine, for
a given h, the value f (h) which is the smallest k for which r(h, k) = (h − 1)k. Theorem 1 shows
that f (h) = O(h log h), but we cannot rule out that f (h) is bounded by a value independent of
h. Nevertheless, we certainly have f (h) ≥ 2 for all h ≥ 3 as demonstrated by the lower bound
in Sumner’s conjecture. Furthermore, Sumner’s conjecture is known to hold for some small h by
computer verification. As usual in Ramsey theory, when the number of colors increases, say even
k = 2 colors, it is not easy to determine r(h, 2) even for very small h. The fact that r(3, 2) = 5 and
r(3, k) = 2k for all k ≥ 3 is a simple exercise. Hence f (3) = 3. Already determining the first non-
trivial case r(4, 2) turns out to be somewhat involved, as well as determining f (h) for h ≥ 4.We show
that:

Theorem 2. r(4, 2) = 12. Hence, f (4) ≥ 3. In fact, f (h) ≥ 3 for all h ≤ 6.

Notice that it is hopeless to use computer verification for r(4, 2) as one needs to check all 2-edge
colorings of all (non-isomorphic) tournaments on 13 vertices and it is known that there are more
than 245 such tournaments.

One may wonder whether Theorem 1 can be strengthened to show that there is some particular
color so that there is a monochromatic copy of every oriented tree with that color. Formally, let
r∗(h, k) be the smallest integer n such that in any k-coloring of the edges of a tournament with more
than n vertices, some color induces a subgraph that contains all oriented trees on h vertices. Clearly
r∗(h, k) ≥ r(h, k). However, we show in Proposition 3.1 that r∗(k, h) ≥ (2h − 3)(h − 1)k−1 so
Theorem 1 does not hold for this stronger parameter, and r∗(h, k) is truly separated from r(h, k).
Nevertheless, we can prove that the bound (h − 1)k is asymptotically correct in the sense that the
base h− 1 can be replaced with h− 1+ ϵ.

Theorem 3. For every ϵ > 0, an integer h ≥ 2 and a positive integer k satisfying (1 + ϵ/(h − 1))k >
2(h− 2)k+ 1 we have r∗(h, k) ≤ (h− 1+ ϵ)k.

It is appropriate tomention here the conjecture of Burr [3] that any digraphwhose chromatic number
is at least 2h − 2 contains every oriented tree on h vertices. It has been proved by Addario-Berry,
Havet, Sales, Reed, and Thomassé [1] that chromatic number h2/2− h/2+ 1 suffices. Hence, if Burr’s
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