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a b s t r a c t

Thedegree anti-RamseynumberARd(H)of a graphH is the smallest
integer k for which there exists a graph Gwithmaximum degree at
most k such that any proper edge colouring of G yields a rainbow
copy of H . In this paper we prove a general upper bound on
degree anti-Ramsey numbers, determine the precise value of the
degree anti-Ramsey number of any forest, and prove an upper
bound on the degree anti-Ramsey numbers of cycles of any length
which is best possible up to a multiplicative factor of 2. Our proofs
involve a variety of tools, including a classical result of Bollobás
concerning cross intersecting families and a topological version of
Hall’s Theorem due to Aharoni, Berger and Meshulam.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A copy of a graph H in an edge coloured graph G is called rainbow if all edges of this copy of H
have distinct colours. The degree anti-Ramsey number ARd(H) of a graph H is the smallest integer k for
which there exists a graph Gwith maximum degree at most k such that any proper edge colouring of
G yields a rainbow copy of H . This notion, which is the focus of this paper, was introduced in [2].

Several versions of anti-Ramsey numbers appear in the literature (see, e.g., [9] and the many
references therein). The local anti-Ramsey number AR(H) of a graph H is the smallest integer n such
that any proper edge colouring of Kn yields a rainbow copy of H . This graph invariant was studied by
various researchers, including Babai [6] and Alon, Lefmann and Rödl [4]. As noted in [2], it is evident
that

ARd(H) ≤ AR(H) − 1 holds for any graph H. (1)
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The size anti-Ramsey number ARs(H) of a graph H is the smallest integer m for which there exists
a graph G with m edges such that any proper edge colouring of G yields a rainbow copy of H . This
graph invariant was introduced by Axenovich, Knauer, Stumpp and Ueckerdt [5] who proved upper
and lower bounds on the size anti-Ramsey numbers of paths, cycles, matchings and cliques. In [2],
Alon proved that ARd(Kk) = Θ(k3/ log k) and used this result to prove that ARs(Kk) = Ω(k6/ log2 k),
thus settling a problem of Axenovich et al. [5].

It readily follows from (1) that any upper bound on AR(H) immediately translates to an upper
bound on ARd(H). One such upper bound was proved by Alon, Jiang, Miller and Pritikin in [3]. It was
proved there that for every graph H = (V , E) with maximum degree ∆,

AR(H) ≤ 2∆2
|V | + 32∆4

+ 4|V |. (2)

Our first result is an improvement of (2) which, in particular, is independent of ∆. Instead, it
depends on the degeneracy ofH = (V , E), i.e., the smallest integer r forwhich there exists an ordering
v1, . . . , vh of the vertices of H such that |{1 ≤ j < i : vjvi ∈ E}| ≤ r holds for every 1 ≤ i ≤ h.
Moreover, our proof is elementary and arguably simpler than the probabilistic argument used in [3].

Theorem 1.1. Let H = (V , E) be a graph and let r be its degeneracy. Then

AR(H) ≤ r|E| − r + |V |.

Note that Theorem1.1 is indeed an improvement of (2), since ifH = (V , E) is graphwithmaximum
degree ∆ and degeneracy r , then

r|E| − r + |V | ≤ r2|V | + |V | ≤ ∆2
|V | + |V |.

Using (1) we obtain the following immediate consequence of Theorem 1.1:

Corollary 1.2. Let H = (V , E) be a graph and let r be its degeneracy. Then

ARd(H) ≤ r|E| − r + |V | − 1.

As observed in [2], it readily follows from Vizing’s Theorem [11] that

ARd(H) ≥ e(H) − 1 holds for any graph H. (3)

It was also observed in [2] that (3) is tight wheneverH is amatchingwith at least 3 edges (it is obvious
that ARd(K2) = 1 and easy to see that ARd(2K2) = 2). Moreover, it was noted in [2] that (3) is almost
tight for forests, i.e., ARd(H) ≤ e(H) whenever H is a forest. Our next result determines the precise
value of the degree anti-Ramsey number of every forest.

Theorem 1.3. Let F be a forest. Then ARd(F) = e(F) − 1, unless F is a star of any size or a matching with
precisely two edges, in which case ARd(F) = e(F).

Finally, we study degree anti-Ramsey numbers of cycles. It readily follows from (3) and
Corollary 1.2 that k − 1 ≤ ARd(Ck) ≤ 3(k − 1) holds for every k ≥ 3. Our next result improves
the upper bound.

Theorem 1.4. For every k ≥ 3,

ARd(Ck) ≤


2(k − 1) if k is even
2(k + 2) if k is odd.

For some small values of kwe can prove sharper bounds. It is obvious that ARd(C3) = 2 andwe can
prove that ARd(C5) ≤ 6 (this will be discussed at the end of Section 4). Our next result determines the
exact value of ARd(C4).

Proposition 1.5.

ARd(C4) = 4.
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