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a b s t r a c t

Given a graph G = (V , E) and a proper vertex colouring of G, a
Kempe chain is a subset of V that induces a maximal connected
subgraph of G in which every vertex has one of two colours. To
make a Kempe change is to obtain one colouring from another
by exchanging the colours of vertices in a Kempe chain. Two
colourings are Kempe equivalent if each can be obtained from the
other by a series of Kempe changes. A conjecture of Mohar asserts
that, for k ≥ 3, all k-colourings of connected k-regular graphs that
are not complete are Kempe equivalent. We address the case k = 3
by showing that all 3-colourings of a connected cubic graph G
are Kempe equivalent unless G is the complete graph K4 or the
triangular prism.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

LetG = (V , E) denote a simple undirected graph and let k be a positive integer. A k-colouring ofG is
a mapping φ : V → {1, . . . , k} such that φ(u) ≠ φ(v) if uv ∈ E. The chromatic number of G, denoted
by χ(G), is the smallest k such that G has a k-colouring.

If a and b are distinct colours of a colouring α, then Gα(a, b) denotes the subgraph of G induced by
vertices with colour a or b. An (a, b)-component under α of G is a connected component of Gα(a, b)
and is known as a Kempe chain (we will omit the reference to α when it is unneeded). A Kempe change
is the operation of interchanging the colours of some (a, b)-component of G. Let Ck(G) be the set of
all k-colourings of G. Two colourings α, β ∈ Ck(G) are Kempe equivalent, denoted by α ∼k β , if each
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Fig. 1. The 3-prism.

can be obtained from the other by a series of Kempe changes. The equivalence classes Ck(G)/ ∼k are
called Kempe classes.

Kempe changes were first introduced by Kempe in his well-known failed attempt at proving the
Four-Colour Theorem. The Kempe change method has proved to be a powerful tool with applications
to several areas such as timetables [16], theoretical physics [21,22], andMarkov chains [20]. The reader
is referred to [15,17] for further details. From a theoretical viewpoint, Kempe equivalence was first
addressed by Fisk [11] who proved that all 4-colourings of an Eulerian triangulation of the plane are
Kempe equivalent. This result was later extended byMeyniel [13]who showed that all 5-colourings of
a planar graph are Kempe equivalent, and by Mohar [15] who proved that all k-colourings, k > χ(G),
of a planar graph G are Kempe equivalent. Las Vergnas and Meyniel [19] extended Meyniel’s result by
proving that all 5-colourings of a K5-minor free graph are Kempe equivalent. Bertschi [2] showed that
all k-colourings of a perfectly contractile graph are Kempe equivalent, and, by further showing that
any Meyniel graph is perfectly contractile, answered in the affirmative a conjecture of Meyniel [14].
We note that Kempe equivalencewith respect to edge-colourings has also been investigated [15,12,1].

Here we are concerned with a conjecture of Mohar [15] on connected k-regular graphs, that is,
graphs in which every vertex has degree k for some k ≥ 0. Note that, for every connected 2-regular
graph G that is not an odd cycle, it holds that C2(G) is a Kempe class. Mohar conjectured the following
(where Kk+1 is the complete graph on k + 1 vertices).

Conjecture 1 ([15]). Let k ≥ 3. If G is a connected k-regular graph that is not Kk+1, then Ck(G) is a Kempe
class.

Notice that if G = Kk+1, then Ck(G) forms an empty Kempe class; so the condition in Conjecture 1 is
not necessary but it is neater to exclude this case. Notice also that if G ≠ Kk+1, then Ck(G) is not empty
by Brooks’ Theorem [7], which states that a graph with maximum degree k has a k-colouring unless it
is an odd cycle or a complete graph.

We address Conjecture 1 for the case k = 3. For this case the conjecture is known to be false. A
counter-example is the 3-prism displayed in Fig. 1. The fact that some 3-colourings of the 3-prism
are not Kempe equivalent was already observed by van den Heuvel [18]. Our contribution is that the
3-prism is the only counter-example for the case k = 3, that is, we completely settle the case k = 3
by proving the following result for 3-regular graphs also known as cubic graphs.

Theorem 1. If G is a connected cubic graph that is neither K4 nor the 3-prism, then C3(G) is a Kempe class.

We give the proof of our result in the next section. Let us note an immediate corollary of our result.
First we need a definition and a lemma. Let d be a positive integer. A graph G is d-degenerate if every
subgraph of G has a vertex with degree at most d.

Lemma 1 ([19,15]). Let d and k be integers, d ≥ 0, k ≥ d + 1. If G is a d-degenerate graph, then Ck(G) is
a Kempe class.

Corollary 1. Let G be a connected graph with maximum degree at most 3. Then C3(G) is a Kempe class
unless G is K4 or the 3-prism.

Proof. A connected graph with maximum degree 3 is either 3-regular or 2-degenerate (this follows
easily from the definition of degenerate, but see also, for example, [10] for a discussion). The corollary
follows from Theorem 1 and Lemma 1. �
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