Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Obstructions for two-vertex alternating embeddings of graphs in surfaces

European Journal of Combinatorics

Bojan Mohar¹, Petr Škoda

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada

ARTICLE INFO

Article history: Received 30 September 2014 Accepted 3 August 2016 Available online 27 August 2016

ABSTRACT

A class of graphs that lies strictly between the classes of graphs of genus (at most) k - 1 and k is studied. For a fixed orientable surface \mathbb{S}_k of genus k, let \mathcal{A}_{xy}^k be the minor-closed class of graphs with terminals x and y that either embed into \mathbb{S}_{k-1} or admit an embedding Π into \mathbb{S}_k such that there is a Π -face where x and yappear twice in the alternating order. In this paper, the obstructions for the classes \mathcal{A}_{xy}^k are studied. In particular, the complete list of obstructions for \mathcal{A}_{xy}^1 is presented.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For a simple graph *G*, let g(G) be the genus of *G*, that is, the minimum *k* such that *G* embeds into the orientable surface \mathbb{S}_k . A combinatorial embedding Π of *G* is a pair (π, λ) where π assigns each vertex $v \in V(G)$ a cyclic permutation of edges adjacent to *v* called the *local rotation* around *v* and the function $\lambda : E(G) \to \{-1, 1\}$ describes the signature of edges when Π is non-orientable. A Π -face is a walk in *G* around a face of Π (for a formal definition see for example [11]). Vertices v_1, \ldots, v_k are Π -cofacial if there is a Π -face where the vertices v_1, \ldots, v_k appear in some order. The Euler genus $\widehat{g}(\Pi)$ of Π is given as the number $2 - |V(G)| + |E(G)| - |F(\Pi)|$ where $F(\Pi)$ is the set of Π -faces. Similarly Euler genus $\widehat{g}(G)$ of *G* is the minimum $\widehat{g}(\Pi)$ of a combinatorial embedding Π of *G*. Note that $\widehat{g}(G)$ is the minimum *k* such that either *k* is even and *G* embeds into the orientable surface $\mathbb{S}_{k/2}$ or *G* embeds into the non-orientable surface \mathbb{N}_k .

For an edge *e* of *G*, the two standard graph operations, *deletion of e*, G - e, and *contraction of e*, G/e, are called *minor operations* and are denoted by G * e when no distinction is necessary. A graph *H*

http://dx.doi.org/10.1016/j.ejc.2016.08.001

E-mail address: pskoda@sfu.ca (P. Škoda).

¹ On leave from: IMFM & FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.

is a *minor* of *G* if *H* is obtained from a subgraph of *G* by a sequence of minor operations. A family of graphs *C* is *minor-closed* if, for each graph $G \in C$, all minors of *G* belong to *C*. A graph *G* is a (*minimal*) *obstruction* for a family *C* if *G* does not belong to *C* but for every edge *e* of *G*, both G - e and G/e belong to *C*. The well-known result of Robertson and Seymour [14] asserts that the list of obstructions is finite for every minor-closed family of graphs.

For a fixed surface \mathbb{S}_k , the graphs that embed into \mathbb{S}_k form a minor-closed family and it is of general interest to understand the sets of obstructions $Forb(\mathbb{S}_k)$ for these families. Unfortunately, $Forb(\mathbb{S}_1)$ already contains thousands of graphs and is not yet determined [6]. We approach the problem by studying graphs in $Forb(\mathbb{S}_k)$ of small connectivity (see [10]).

In this paper we study a phenomenon that arises when joining two graphs by two vertices. Given graphs G_1 and G_2 such that $V(G_1) \cap V(G_2) = \{x, y\}$, the union of G_1 and G_2 , that is the graph $(V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$, is the *xy-sum* of G_1 and G_2 . The vertices *x* and *y* are called *terminals* and will be often distinguished from other vertices throughout this paper. To determine the genus of the *xy-sum* of G_1 and G_2 , it is necessary to know if G_1 and G_2 have a minimum genus embedding Π such that there is a Π -face in which *x* and *y* appear twice in the alternating order (see [4,5]). For vertices *x*, $y \in V(G)$, we say that *G* is *xy-alternating* on \mathbb{S}_k if g(G) = k and *G* has an embedding Π of genus *k* with a Π -face $W = v_1 \dots v_r$ and indices i_1, \dots, i_4 such that $1 \le i_1 < i_2 < i_3 < i_4 \le r$, $v_{i_1} = v_{i_3} = x$, and $v_{i_2} = v_{i_4} = y$.

A graph G is *k*-connected if G has at least k + 1 vertices and G remains connected after deletion of any k - 1 vertices. A graph has connectivity k if it is *k*-connected but not (k + 1)-connected. When Ghas connectivity 1, vertices whose removal render G disconnected are called *cutvertices*. A block of Gis a maximal subgraph of G that is 2-connected or an edge not contained in any cycle of G. An *endblock* is a block that contains at most one cutvertex.

To determine minimal obstructions of connectivity 2, we need to know which graphs are minimal *not xy*-alternating (see [10]). For $k \ge 1$, let \mathcal{A}_{xy}^k be the class of graphs with terminals *x* and *y* that are either embeddable in \mathbb{S}_{k-1} or are *xy*-alternating on \mathbb{S}_k . When performing minor operations on *graphs with terminals*, we do not allow a contraction identifying two terminals to a single vertex. Also, when contracting an edge joining a terminal and a non-terminal vertex, the new vertex is a terminal. Thus the number of terminals of a minor is the same as of the original graph. A homomorphism of two graphs with terminals. Also, the two terminals may be interchanged. Under these restrictions, \mathcal{A}_{xy}^k is a minor-closed family of graphs such that each graph has two terminals. Let \mathcal{F}_{xy}^k be the set of minimal obstructions for \mathcal{A}_{xy}^k , that is, a graph *G* belongs to \mathcal{F}_{xy}^k if $G \notin \mathcal{A}_{xy}^k$ and, for each edge $e \in E(G)$ and each allowed minor operation *, $G * e \in \mathcal{A}_{xy}^k$. It is shown in Section 2 that \mathcal{F}_{xy}^k is finite for each $k \ge 1$. Note that each vertex of a graph in \mathcal{F}_{xy}^k has degree at least 3 except possible when it is a terminal.

that each vertex of a graph in \mathcal{F}_{xy}^k has degree at least 3 except possible when it is a terminal. A *Kuratowski graph* is a graph isomorphic to K_5 , the complete graph on five vertices, or to $K_{3,3}$, the complete bipartite graph on a pair of ternary partite sets. For a fixed Kuratowski graph K, a *Kuratowski subgraph* in G is a minimal subgraph of G that contains K as a minor. A *K-graph L* in G is a subdivision of K_4 or $K_{2,3}$ that can be extended to a Kuratowski subgraph in G. We are using extensively the following well-known theorem.

Theorem 1 (Kuratowski [8]). A graph is planar if and only if it does not contain a Kuratowski subgraph.

Let *G* be a 2-connected graph. Each vertex of degree different from two is a *branch vertex*. A *branch* of *G* is a path in *G* whose endvertices are branch vertices and such that each intermediate vertex has degree 2.

Let *H* be a subgraph of *G*. An *H*-bridge in *G* is a subgraph of *G* which is either an edge not in *H* but with both ends in *H*, or a connected component of G - V(H) together with all edges which have one end in this component and the other end in *H*. For a *H*-bridge *B*, the *interior* of *B*, B° , is the set $E(B) \cup (V(B) \setminus V(H))$ containing the edges of *B* and the vertices inside *B*. Thus, $G - B^{\circ}$ is the graph obtained from *G* by deleting *B*.

Let *B* be an *H*-bridge in *G*. The vertices in $V(B) \cap V(H)$ are called *attachments* of *B*. The bridge *B* is a *local bridge* if all attachments of *B* lie on a single branch of *H*.

Download English Version:

https://daneshyari.com/en/article/4653198

Download Persian Version:

https://daneshyari.com/article/4653198

Daneshyari.com