Obstructions for two-vertex alternating embeddings of graphs in surfaces

Bojan Mohar ${ }^{1}$, Petr Škoda
Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada

A R T I C L E I N F O

Article history:

Received 30 September 2014
Accepted 3 August 2016
Available online 27 August 2016

Abstract

A class of graphs that lies strictly between the classes of graphs of genus (at most) $k-1$ and k is studied. For a fixed orientable surface \mathbb{S}_{k} of genus k, let $\mathcal{A}_{x y}^{k}$ be the minor-closed class of graphs with terminals x and y that either embed into \mathbb{S}_{k-1} or admit an embedding Π into \mathbb{S}_{k} such that there is a Π-face where x and y appear twice in the alternating order. In this paper, the obstructions for the classes $\mathcal{A}_{x y}^{k}$ are studied. In particular, the complete list of obstructions for $\mathcal{A}_{x y}^{1}$ is presented.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For a simple graph G, let $g(G)$ be the genus of G, that is, the minimum k such that G embeds into the orientable surface \mathbb{S}_{k}. A combinatorial embedding Π of G is a pair (π, λ) where π assigns each vertex $v \in V(G)$ a cyclic permutation of edges adjacent to v called the local rotation around v and the function $\lambda: E(G) \rightarrow\{-1,1\}$ describes the signature of edges when Π is non-orientable. A Π-face is a walk in G around a face of Π (for a formal definition see for example [11]). Vertices v_{1}, \ldots, v_{k} are Π-cofacial if there is a Π-face where the vertices v_{1}, \ldots, v_{k} appear in some order. The Euler genus $\widehat{g}(\Pi)$ of Π is given as the number $2-|V(G)|+|E(G)|-|F(\Pi)|$ where $F(\Pi)$ is the set of Π-faces. Similarly Euler genus $\widehat{g}(G)$ of G is the minimum $\widehat{g}(\Pi)$ of a combinatorial embedding Π of G. Note that $\widehat{g}(G)$ is the minimum k such that either k is even and G embeds into the orientable surface $\mathbb{S}_{k / 2}$ or G embeds into the non-orientable surface \mathbb{N}_{k}.

For an edge e of G, the two standard graph operations, deletion of $e, G-e$, and contraction of e, G / e, are called minor operations and are denoted by $G * e$ when no distinction is necessary. A graph H

[^0]is a minor of G if H is obtained from a subgraph of G by a sequence of minor operations. A family of graphs \mathcal{C} is minor-closed if, for each graph $G \in \mathcal{C}$, all minors of G belong to \mathcal{C}. A graph G is a (minimal) obstruction for a family \mathcal{C} if G does not belong to \mathcal{C} but for every edge e of G, both $G-e$ and G / e belong to \mathcal{C}. The well-known result of Robertson and Seymour [14] asserts that the list of obstructions is finite for every minor-closed family of graphs.

For a fixed surface \mathbb{S}_{k}, the graphs that embed into \mathbb{S}_{k} form a minor-closed family and it is of general interest to understand the sets of obstructions $\operatorname{Forb}\left(\mathbb{S}_{k}\right)$ for these families. Unfortunately, $\operatorname{Forb}\left(\mathbb{S}_{1}\right)$ already contains thousands of graphs and is not yet determined [6]. We approach the problem by studying graphs in $\operatorname{Forb}\left(\mathbb{S}_{k}\right)$ of small connectivity (see [10]).

In this paper we study a phenomenon that arises when joining two graphs by two vertices. Given graphs G_{1} and G_{2} such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x, y\}$, the union of G_{1} and G_{2}, that is the graph $\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$, is the $x y$-sum of G_{1} and G_{2}. The vertices x and y are called terminals and will be often distinguished from other vertices throughout this paper. To determine the genus of the $x y$-sum of G_{1} and G_{2}, it is necessary to know if G_{1} and G_{2} have a minimum genus embedding Π such that there is a Π-face in which x and y appear twice in the alternating order (see [4,5]). For vertices $x, y \in V(G)$, we say that G is $x y$-alternating on \mathbb{S}_{k} if $g(G)=k$ and G has an embedding Π of genus k with a Π-face $W=v_{1} \ldots v_{r}$ and indices i_{1}, \ldots, i_{4} such that $1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq r, v_{i_{1}}=v_{i_{3}}=x$, and $v_{i_{2}}=v_{i_{4}}=y$.

A graph G is k-connected if G has at least $k+1$ vertices and G remains connected after deletion of any $k-1$ vertices. A graph has connectivity k if it is k-connected but not $(k+1)$-connected. When G has connectivity 1 , vertices whose removal render G disconnected are called cutvertices. A block of G is a maximal subgraph of G that is 2 -connected or an edge not contained in any cycle of G. An endblock is a block that contains at most one cutvertex.

To determine minimal obstructions of connectivity 2 , we need to know which graphs are minimal not $x y$-alternating (see [10]). For $k \geq 1$, let $\mathscr{A}_{x y}^{k}$ be the class of graphs with terminals x and y that are either embeddable in \mathbb{S}_{k-1} or are $x y$-alternating on \mathbb{S}_{k}. When performing minor operations on graphs with terminals, we do not allow a contraction identifying two terminals to a single vertex. Also, when contracting an edge joining a terminal and a non-terminal vertex, the new vertex is a terminal. Thus the number of terminals of a minor is the same as of the original graph. A homomorphism of two graphs with terminals is an isomorphism if it is a graph isomorphism and (non-)terminals are mapped onto (non-)terminals. Also, the two terminals may be interchanged. Under these restrictions, $\mathcal{A}_{x y}^{k}$ is a minor-closed family of graphs such that each graph has two terminals. Let $\mathcal{F}_{x y}^{k}$ be the set of minimal obstructions for $\mathcal{A}_{x y}^{k}$, that is, a graph G belongs to $\mathcal{F}_{x y}^{k}$ if $G \notin \mathcal{A}_{x y}^{k}$ and, for each edge $e \in E(G)$ and each allowed minor operation $*, G * e \in \mathcal{A}_{x y}^{k}$. It is shown in Section 2 that $\mathcal{F}_{x y}^{k}$ is finite for each $k \geq 1$. Note that each vertex of a graph in $\mathcal{F}_{x y}^{k}$ has degree at least 3 except possible when it is a terminal.

A Kuratowski graph is a graph isomorphic to K_{5}, the complete graph on five vertices, or to $K_{3,3}$, the complete bipartite graph on a pair of ternary partite sets. For a fixed Kuratowski graph K, a Kuratowski subgraph in G is a minimal subgraph of G that contains K as a minor. A K-graph L in G is a subdivision of K_{4} or $K_{2,3}$ that can be extended to a Kuratowski subgraph in G. We are using extensively the following well-known theorem.

Theorem 1 (Kuratowski [8]). A graph is planar if and only if it does not contain a Kuratowski subgraph.
Let G be a 2-connected graph. Each vertex of degree different from two is a branch vertex. A branch of G is a path in G whose endvertices are branch vertices and such that each intermediate vertex has degree 2.

Let H be a subgraph of G. An H-bridge in G is a subgraph of G which is either an edge not in H but with both ends in H, or a connected component of $G-V(H)$ together with all edges which have one end in this component and the other end in H. For a H-bridge B, the interior of B, B°, is the set $E(B) \cup(V(B) \backslash V(H))$ containing the edges of B and the vertices inside B. Thus, $G-B^{\circ}$ is the graph obtained from G by deleting B.

Let B be an H-bridge in G. The vertices in $V(B) \cap V(H)$ are called attachments of B. The bridge B is a local bridge if all attachments of B lie on a single branch of H.

https://daneshyari.com/en/article/4653198

Download Persian Version
https://daneshyari.com/article/4653198

Daneshyari.com

[^0]: E-mail address: pskoda@sfu.ca (P. Škoda).
 ${ }^{1}$ On leave from: IMFM \& FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.
 http://dx.doi.org/10.1016/j.ejc.2016.08.001
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

