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We prove a Fortuin–Kasteleyn–Ginibre-type inequality for the 
lattice of compositions of the integer n with at most r parts. 
As an immediate application we get a wide generalization of 
the classical Alexandrov–Fenchel inequality for mixed volumes 
and of Teissier’s inequality for mixed covolumes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Consider a finite partially ordered set (X, �) and two non-decreasing (non-
negative) functions, f, g : X → R≥0. (Namely, for any x, y ∈ X, if x � y then one 
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has f(x) ≤ f(y) and g(x) ≤ g(y).) The product function f · g : X → R≥0 is also 
non-decreasing. Take the arithmetic average

AvX(f) := (
∑
x∈X

f(x))/|X|.

A natural question is whether AvX(f) ·AvX(g) can be compared with AvX(f · g).

Example 1.1. Suppose that X is totally ordered. Then the non-decreasing functions 
are just the non-decreasing sequences of real numbers, 0 ≤ a1 ≤ · · · ≤ an and 
0 ≤ b1 ≤ · · · ≤ bn. In this case the comparison of the averages is realized by the clas-
sical Chebyshev sum inequality: (

∑
i ai)(

∑
j bj) ≤ n(

∑
i aibi).

On the other hand, if the order on X is not “strong enough” then the inequality utterly 
fails. Hence, the more precise question is:

Which posets does AvX(f) ·AvX(g) ≤ AvX(f · g) hold for? (1)

If (X, �) admits an action of some group G, then one can consider the “equivariant” 
version of this question by taking G-invariant functions f and g.

The fundamental Fortuin–Kasteleyn–Ginibre (FKG) inequality settles the question 
for a large class of lattices:

Theorem 1.2 ([8], see also [3, pg. 147, Theorem 5]). Let X be a finite distributive lattice. 
Consider a “measure”, X μ→ R≥0, which is log-supermodular, i.e. μ(x ∧ y)μ(x ∨ y) ≥
μ(x)μ(y) for any x, y ∈ X. Then 

( ∑
x∈X

f(x)g(x)μ(x)
)
·
∑
x∈X

μ(x) ≥
( ∑

x∈X

f(x)μ(x)
)
×( ∑

x∈X

g(x)μ(x)
)
.

(The inequality of equation (1) is obtained for the constant measure, μ(x) = 1, which 
is trivially supermodular.)

One of the interpretation of the FKG inequality is: “in many systems the increas-
ing events are positively correlated” (while an increasing event and a decreasing event 
are negatively correlated). Hence, the applications of this inequality go far beyond the 
combinatorics and include e.g. statistical mechanics and probability.

1.2. The condition “X is a distributive lattice” in the above theorem is rather restric-
tive. Many of the natural posets appearing in arithmetics/algebra/geometry are not of 
this type. In the current work we establish the inequality of equation (1) for a particular 
poset Kn,r of ordered compositions, cf. Theorem 3.1. This poset appears frequently in 
the context of the Young diagrams (representation theory), complete intersections (alge-
braic geometry), mixed (co)volumes/multiplicities (integral geometry and commutative 
algebra).
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