

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

On metric properties of maps between Hamming spaces and related graph homomorphisms

Journal of

Yury Polyanskiy

Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA

ARTICLE INFO

Article history: Received 21 March 2015 Available online 31 August 2016

Keywords: Error-correcting codes Graph homomorphism Schrijver's θ -function Projective geometry over \mathbb{F}_2

ABSTRACT

A mapping of k-bit strings into n-bit strings is called an (α, β) -map if k-bit strings which are more than αk apart are mapped to n-bit strings that are more than βn apart in Hamming distance. This is a relaxation of the classical problem of constructing error-correcting codes, which corresponds to $\alpha = 0$. Existence of an (α, β) -map is equivalent to existence of a graph homomorphism $\overline{H}(k, \alpha k) \rightarrow \overline{H}(n, \beta n)$, where H(n, d) is a Hamming graph with vertex set $\{0, 1\}^n$ and edges connecting vertices differing in d or fewer entries.

This paper proves impossibility results on achievable parameters (α, β) in the regime of $n, k \to \infty$ with a fixed ratio $\frac{n}{k} = \rho$. This is done by developing a general criterion for existence of graph-homomorphism based on the semi-definite relaxation of the independence number of a graph (known as the Schrijver's θ -function). The criterion is then evaluated using some known and some new results from coding theory concerning the θ -function of Hamming graphs. As an example, it is shown that if $\beta > 1/2$ and $\frac{n}{k}$ – integer, the $\frac{n}{k}$ -fold repetition map achieving $\alpha = \beta$ is asymptotically optimal.

Finally, constraints on configurations of points and hyperplanes in projective spaces over \mathbb{F}_2 are derived.

© 2016 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.jcta.2016.08.005} 0097\text{-}3165 \ensuremath{\oslash}\ 02016 \ Elsevier \ Inc. \ All \ rights \ reserved.$

E-mail address: yp@mit.edu.

1. Introduction

Hamming space \mathbb{F}_2^k of binary k-strings, equipped with the Hamming distance is one of the classical objects studied in combinatorics. Its properties that received significant attention are the maximal packing densities, covering numbers, isoperimetric inequalities, list-decoding properties, etc. In this paper we are interested in studying metric properties of maps $f: \mathbb{F}_2^k \to \mathbb{F}_2^n$ between Hamming spaces of different dimensions.

Indeed, frequently one is interested in embedding \mathbb{F}_2^k into \mathbb{F}_2^n "expansively", i.e. so that points that were far apart in \mathbb{F}_2^k remain far apart in \mathbb{F}_2^n . Two immediate examples of such maps are: the error-correcting codes with rate k/n and minimum distance d satisfy

$$|x - x'| > 0 \implies |f(x) - f(x')| \ge d,$$

where here and below $|z| = ||z||_0 = |\{i : z_i \neq 0\}|$ is the Hamming weight of the vector. Another example is the repetition coding with f(x) mapping x into $\frac{n}{k}$ repetitions of x. This map satisfies:

$$|x - x'| > \alpha k \implies |f(x) - f(x')| > \alpha n.$$
(1)

With these two examples in mind, we introduce the main concept of this paper.

Definition 1. A map $f : \mathbb{F}_2^k \to \mathbb{F}_2^n$ is called an $(\alpha, \beta; k, n)$ -map (or simply an (α, β) -map) if αk and βn are integers and for all $x, x' \in \mathbb{F}_2^k$ we have either

$$|f(x) - f(x')| > \beta n \quad \text{or} \quad |x - x'| \le \alpha k \,, \tag{2}$$

where \mathbb{F}_2^k is the Hamming space of dimension k over the binary field.

We next define the Hamming graphs H(n, d) for integer $d \in [0, n]$ as follows:

$$V(H(n,d)) = \mathbb{F}_2^n, \quad E(H(n,d)) = \{(x,x') : 0 < |x-x'| \le d\}.$$
(3)

By V(G), E(G) and $\alpha(G)$ we denote the vertices of G, the edges of G and the cardinality of the maximal independent set of G. All graphs in this paper are simple (without self-loops and multiple edges). By \overline{G} we denote the (simple) graph obtained by complementing E(G) and deleting self-loops.

The relevance of Hamming graphs to this paper comes from the simple observation:

$$\exists (\alpha, \beta; k, n) \text{-map} \quad \iff \quad H(k, \alpha k) \to H(n, \beta n)$$

where $G \to H$ denotes the existence of a graph homomorphism (see Section 3 for definition).

This paper focuses on proving negative results showing impossibility of certain parameters (α, β) . Note that there are a variety of methods that we can use to disprove

Download English Version:

https://daneshyari.com/en/article/4655032

Download Persian Version:

https://daneshyari.com/article/4655032

Daneshyari.com