On metric properties of maps between Hamming spaces and related graph homomorphisms

Yury Polyanskiy
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA

A R T I C L E I N F O

Article history:

Received 21 March 2015
Available online 31 August 2016

Keywords:

Error-correcting codes
Graph homomorphism
Schrijver's θ-function
Projective geometry over \mathbb{F}_{2}

Abstract

A mapping of k-bit strings into n-bit strings is called an (α, β)-map if k-bit strings which are more than αk apart are mapped to n-bit strings that are more than βn apart in Hamming distance. This is a relaxation of the classical problem of constructing error-correcting codes, which corresponds to $\alpha=0$. Existence of an (α, β)-map is equivalent to existence of a graph homomorphism $\bar{H}(k, \alpha k) \rightarrow \bar{H}(n, \beta n)$, where $H(n, d)$ is a Hamming graph with vertex set $\{0,1\}^{n}$ and edges connecting vertices differing in d or fewer entries. This paper proves impossibility results on achievable parameters (α, β) in the regime of $n, k \rightarrow \infty$ with a fixed ratio $\frac{n}{k}=\rho$. This is done by developing a general criterion for existence of graph-homomorphism based on the semi-definite relaxation of the independence number of a graph (known as the Schrijver's θ-function). The criterion is then evaluated using some known and some new results from coding theory concerning the θ-function of Hamming graphs. As an example, it is shown that if $\beta>1 / 2$ and $\frac{n}{k}$ - integer, the $\frac{n}{k}$-fold repetition map achieving $\alpha=\beta$ is asymptotically optimal. Finally, constraints on configurations of points and hyperplanes in projective spaces over \mathbb{F}_{2} are derived.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Hamming space \mathbb{F}_{2}^{k} of binary k-strings, equipped with the Hamming distance is one of the classical objects studied in combinatorics. Its properties that received significant attention are the maximal packing densities, covering numbers, isoperimetric inequalities, list-decoding properties, etc. In this paper we are interested in studying metric properties of maps $f: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n}$ between Hamming spaces of different dimensions.

Indeed, frequently one is interested in embedding \mathbb{F}_{2}^{k} into \mathbb{F}_{2}^{n} "expansively", i.e. so that points that were far apart in \mathbb{F}_{2}^{k} remain far apart in \mathbb{F}_{2}^{n}. Two immediate examples of such maps are: the error-correcting codes with rate k / n and minimum distance d satisfy

$$
\left|x-x^{\prime}\right|>0 \Longrightarrow\left|f(x)-f\left(x^{\prime}\right)\right| \geq d
$$

where here and below $|z|=\|z\|_{0}=\left|\left\{i: z_{i} \neq 0\right\}\right|$ is the Hamming weight of the vector. Another example is the repetition coding with $f(x)$ mapping x into $\frac{n}{k}$ repetitions of x. This map satisfies:

$$
\begin{equation*}
\left|x-x^{\prime}\right|>\alpha k \Longrightarrow\left|f(x)-f\left(x^{\prime}\right)\right|>\alpha n . \tag{1}
\end{equation*}
$$

With these two examples in mind, we introduce the main concept of this paper.
Definition 1. A map $f: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{n}$ is called an $(\alpha, \beta ; k, n)$-map (or simply an (α, β)-map) if αk and βn are integers and for all $x, x^{\prime} \in \mathbb{F}_{2}^{k}$ we have either

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right|>\beta n \quad \text { or } \quad\left|x-x^{\prime}\right| \leq \alpha k, \tag{2}
\end{equation*}
$$

where \mathbb{F}_{2}^{k} is the Hamming space of dimension k over the binary field.
We next define the Hamming graphs $H(n, d)$ for integer $d \in[0, n]$ as follows:

$$
\begin{equation*}
V(H(n, d))=\mathbb{F}_{2}^{n}, \quad E(H(n, d))=\left\{\left(x, x^{\prime}\right): 0<\left|x-x^{\prime}\right| \leq d\right\} . \tag{3}
\end{equation*}
$$

By $V(G), E(G)$ and $\mathbb{\alpha}(G)$ we denote the vertices of G, the edges of G and the cardinality of the maximal independent set of G. All graphs in this paper are simple (without self-loops and multiple edges). By \bar{G} we denote the (simple) graph obtained by complementing $E(G)$ and deleting self-loops.

The relevance of Hamming graphs to this paper comes from the simple observation:

$$
\exists(\alpha, \beta ; k, n) \text {-map } \quad \Longleftrightarrow \quad \bar{H}(k, \alpha k) \rightarrow \bar{H}(n, \beta n),
$$

where $G \rightarrow H$ denotes the existence of a graph homomorphism (see Section 3 for definition).

This paper focuses on proving negative results showing impossibility of certain parameters (α, β). Note that there are a variety of methods that we can use to disprove

https://daneshyari.com/en/article/4655032

Download Persian Version:
https://daneshyari.com/article/4655032

Daneshyari.com

[^0]: E-mail address: yp@mit.edu.

