

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

On derivatives of graphon parameters

László Miklós Lovász^a, Yufei Zhao^{b,1}

^a Department of Mathematics, MIT, Cambridge, MA 02139, United States
^b Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

ARTICLE INFO

Article history: Received 4 June 2015 Available online 3 September 2016

Keywords: Graphons Graph limits Graph homomorphisms Gâteaux derivatives

ABSTRACT

We give a short elementary proof of the main theorem in the paper "Differential calculus on graphon space" by Diao et al. (2015) [2], which says that any graphon parameters whose (N+1)-th derivatives all vanish must be a linear combination of homomorphism densities t(H, -) over graphs H on at most N edges.

© 2016 Elsevier Inc. All rights reserved.

Let $\mathcal{W} \subset L^{\infty}([0,1]^2,\mathbb{R})$ denote the set of bounded symmetric measurable functions $f: [0,1]^2 \to \mathbb{R}$ (here symmetric means f(x,y) = f(y,x) for all x,y). Let $\mathcal{W}_{[0,1]} \subset \mathcal{W}$ denote those functions in \mathcal{W} taking values in [0,1]. Such functions, known as graphons, are central to the theory of graph limits [3], an exciting and active research area giving an analytic perspective towards graph theory.

In [2], the authors systematically study the local structure of differentiable graphon parameters. They develop the theory of consistency constraints for multilinear functionals on graphon space, and as a consequence, obtain the result (Theorem 1 below) that is the graphon analog of the following basic fact from calculus: the set of functions whose (N+1)-th derivatives all vanish identically is precisely the set of polynomials of degree at most N. For graphons, homomorphism densities t(H, -) play the role of monomials: they

E-mail addresses: lmlovasz@math.mit.edu (L.M. Lovász), yufei.zhao@maths.ox.ac.uk (Y. Zhao).

¹ Y. Zhao was supported by a Microsoft Research PhD Fellowship.

generate a ring of smooth functions that separate points and they have the property of vanishing higher derivatives as in Theorem 1. In this short note, we follow a more direct route to prove their result. Our proof avoids the technicalities of the approach in [2].

We begin with some definitions. The space \mathcal{W} is equipped with the *cut norm*

$$||f||_{\Box} := \sup_{\text{measurable } S, T \subseteq [0,1]} \left| \int_{S \times T} f(x,y) \, dx \, dy \right|.$$

Given $g \in \mathcal{W}$, and a measure-preserving map $\phi \colon [0,1] \to [0,1]$, we define $g^{\phi}(x,y) := g(\phi(x), \phi(y))$. The *cut distance* on \mathcal{W} is defined by $\delta_{\Box}(f,g) := \inf_{\phi} ||f - g^{\phi}||_{\Box}$ where ϕ ranges over all such measure-preserving maps. Let \sim denote the equivalence relations in \mathcal{W} defined by $f \sim g \Leftrightarrow \delta_{\Box}(f,g) = 0$. It is known that $(\mathcal{W}_{[0,1]}/\sim, \delta_{\Box})$ is a compact metric space [4].

Functions $F: \mathcal{W}_{[0,1]}/ \to \mathbb{R}$ are called *class functions* (we import this terminology from [2]; the term *graphon parameter* is also used in the literature). Class functions that are continuous with respect to the cut distance play an important role in graph parameter/property testing [1,5].

Define the admissible directions at $f \in \mathcal{W}_{[0,1]}$ as

$$Adm(f) := \{g \in \mathcal{W} : f + \epsilon g \in \mathcal{W}_{[0,1]} \text{ for some } \epsilon > 0\}.$$

The Gâteaux derivative of F at $f \in W_{[0,1]}$ in the direction $g \in \text{Adm}(f)$ is defined by (if it exists)

$$dF(f;g) := \lim_{\lambda \to 0^+} \frac{1}{\lambda} (F(f + \lambda g) - F(f)).$$

Higher mixed Gâteaux derivatives are defined iteratively: $d^{N+1}F(f;g_1,\ldots,g_{N+1})$ is defined to be the Gâteaux derivative of $d^NF(-;g_1,\ldots,g_N)$ at f in the direction g_{N+1} , if this limit exists.

Let \mathcal{H}_n denote the isomorphism classes of multi-graphs with n edges, no isolated vertices, and no self-loops but possible multi-edges. Also let $\mathcal{H}_{\leq n} := \bigcup_{j \leq n} \mathcal{H}_j$ and $\mathcal{H} := \bigcup_{i \in \mathbb{N}} \mathcal{H}_j$.

For any $H \in \mathcal{H}$, and any $f \in \mathcal{W}$, we define the homomorphism density

$$t(H,f) := \int_{[0,1]^{V(H)}} \prod_{ij \in E(H)} f(x_i, x_j) \prod_{i \in V(H)} dx_i,$$

where E(H) is the multi-set of edges of H. For example, when H consists of two vertices and two parallel edges between them, $t(H, W) = \int_{[0,1]^2} W(x, y)^2 dx dy$.

Here is the main result of [2].

Download English Version:

https://daneshyari.com/en/article/4655036

Download Persian Version:

https://daneshyari.com/article/4655036

Daneshyari.com