On judicious partitions of uniform hypergraphs ${ }^{\boldsymbol{*}}$

Jianfeng Hou ${ }^{\text {a }}$, Shufei Wu ${ }^{\text {a }}$, Guiying Yan ${ }^{\text {b }}$
${ }^{\text {a }}$ Center for Discrete Mathematics, Fuzhou University, Fujian 350003, China
${ }^{\text {b }}$ Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China

A R T I C L E I N F O

Article history:

Received 9 September 2014
Available online 24 February 2016

Keywords:

Uniform hypergraph
Judicious partition
Azuma-Hoeffding inequality

A B S T R A C T

Bollobás and Scott showed that the vertices of a graph of m edges can be partitioned into k sets such that each set contains at most $m / k^{2}+o(m)$ edges. They conjectured that the vertices of an r-uniform hypergraph, where $r \geq 3$, of m edges may likewise be partitioned into k sets such that each set contains at most $m / k^{r}+o(m)$ edges. In this paper, we prove the weaker statement that a partition into k sets can be found in which each set contains at most $\frac{m}{(k-1)^{r}+r^{1 / 2}(k-1)^{r / 2}}+o(m)$ edges. Some partial results on this conjecture are also given.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

An r-uniform hypergraph H consists of a finite set $V(H)$ of vertices and a set $E(H)$ of edges, where each edge is an r-subset of $V(H)$. For a vertex $v \in V(H)$, the degree $d_{H}(v)$ (or $d(v)$ for short) of v is the number of edges of H containing v. The maximum degree $\Delta(H)$ (or Δ for short) of H is the maximum of $d(v)$ over all vertices v in H. For disjoint subsets X, Y of $V(H)$, we use $E(X)$ to denote the set of edges of H that are contained in X and let $e(X)=|E(X)|$, and $E(X, Y)$ to denote the set of edges of

[^0]H that are contained in $X \cup Y$ and incident with both X and Y and let $e(X, Y)=$ $|E(X, Y)|$.

As usual $[k]$ stands for the set $\{1,2, \ldots, k\}$.
Graph or hypergraph partitioning problems usually ask for a partition of the vertex set of a graph or hypergraph into pairwise disjoint subsets with various requirements. For example, the well-known Max-Cut Problem asks for a partition V_{1}, V_{2} of the vertex set of a graph G, that maximizes the number of edges with an end in each V_{i}. It is NP-hard even when restricted to triangle-free cubic graphs [22] and has been a very active research subject in both Combinatorics and Computer Science.

It is well known that every graph of m edges contains a bipartite subgraph with at least $m / 2$ edges. Edwards [9,10] proved the essentially best possible result: every graph with m edges has a bipartite subgraph with at least $m / 2+h(m) / 4$ edges, where

$$
h(m)=\sqrt{2 m+\frac{1}{4}}-\frac{1}{2} .
$$

Alon [1] showed that Edwards' bound can be increased by $\Omega\left(m^{1 / 4}\right)$ for infinitely many m. For special classes of graphs, such as subcubic graphs [20,23], the main term in Edwards' bound can be improved. The Max-Cut Problem for multigraphs and weighted graphs was studied by Alon and Halperin [3] and independently by Bollobás and Scott [8]. Further discussion can be found in [19].

Judicious partitioning problems maximize or minimize several quantities simultaneously. In the Max-Cut setting, the canonical example is the beautiful result of Bollobás and Scott [6]: there is a cut $\left(V_{1}, V_{2}\right)$ which achieves not only Edwards' bound, but also the best possible bound on $\max \left\{e\left(V_{1}\right), e\left(V_{2}\right)\right\}$.

In [6], Bollobás and Scott also considered judicious k-partitions of graphs and proved that every graph G of m edges has a partition V_{1}, \ldots, V_{k} such that

$$
e\left(V_{i}\right) \leq \frac{1}{k^{2}} m+\frac{k-1}{2 k^{2}} h(m)
$$

for each $i \in[k]$.
While there are reasonable bounds for many judicious partitioning problems for graphs [2,11,12,16,21], the analogous problems for hypergraphs seem to be much more difficult. There are some asymptotic results for 3 -uniform hypergraphs [13,18], but for r-uniform hypergraphs with $r \geq 4$, there are few results [14]. In 1997, Bollobás and Scott [5] posed the following conjecture.

Conjecture 1. Let $r \geq 3$ and $k \geq 2$ be fixed integers. Then every r-uniform hypergraph H of m edges has a partition V_{1}, \ldots, V_{k} such that

$$
e\left(V_{i}\right) \leq \frac{m}{k^{r}}+o(m)
$$

for each $i \in[k]$.

https://daneshyari.com/en/article/4655065

Download Persian Version:

https://daneshyari.com/article/4655065

Daneshyari.com

[^0]: 4. This work is supported by a research grant from NSFC (11331003).

 E-mail address: jfhou@fzu.edu.cn (J. Hou).

