On the chromatic number of a random hypergraph

Martin Dyer ${ }^{\mathrm{a}, 1}$, Alan Frieze ${ }^{\mathrm{b}, 2}$, Catherine Greenhill ${ }^{\mathrm{c}, 3}$
a School of Computing, University of Leeds, Leeds LS2 9JT, UK
b Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
c School of Mathematics and Statistics, UNSW Australia, Sydney, NSW 2052, Australia

A R T I C L E I N F O

Article history:

Received 15 September 2012
Available online 26 January 2015

Keywords:

Hypergraph
Colouring
Chromatic number
Uniform hypergraph
Random hypergraph

A B S T R A C T

We consider the problem of k-colouring a random r-uniform hypergraph with n vertices and $c n$ edges, where k, r, c remain constant as $n \rightarrow \infty$. Achlioptas and Naor showed that the chromatic number of a random graph in this setting, the case $r=2$, must have one of two easily computable values as $n \rightarrow \infty$. We give a complete generalisation of this result to random uniform hypergraphs.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study the problem of k-colouring a random r-uniform hypergraph with n vertices and $c n$ edges, where k, r and c are considered to be constant as $n \rightarrow \infty$. We generalise a theorem of Achlioptas and Naor [4] for k-colouring a random graph (2-uniform hypergraph) on n vertices.

[^0]Their theorem specifies the two possible values for the chromatic number of the random graph as $n \rightarrow \infty$. We give a complete generalisation of the result of [4]. We broadly follow the approach of Achlioptas and Naor [4], although they rely on simplifications which are available only in the case $r=2$. We show that these simplifications can be replaced by more general techniques, valid for all $k, r \geq 2$ except $k=r=2$.

There is an extensive literature on this problem in the case $r=2$, colouring random graphs. In the setting we consider here, this culminates with the results of Achlioptas and Naor [4], though these do not give a complete answer to the problem. Our results here include those of [4].

There is also a literature for the case $k=2$, random hypergraph 2-colouring. Achlioptas, Kim, Krivelevich and Tetali [2] gave a constructive approach, but their results were substantially improved by Achlioptas and Moore [3], using non-constructive methods. The results of [3] are asymptotic in r. Our results here include those of [3], but we also give a non-asymptotic treatment. Recently, Coja-Oghlan and Zdeborová [8] have given a small qualitative improvement of the result of [3], which goes beyond what can be proved here. See these papers, and their references, for further information.

Finally, we note that Krivelevich and Sudakov [14] studied a wide range of random hypergraph colouring problems, and some of their results were recently improved by Kupavskii and Shabanov [15]. But, in the setting of this paper, these results are much less precise than those we establish here.

Remark 1.1. After preparing this paper, we learnt of related work by Coja-Oghlan and his coauthors in the case $r=2$. Coja-Oghlan and Vilenchik [7] improved the upper bound on the k-colourability threshold, restricting the sharp threshold for k-colourability to an interval of constant width, compared with logarithmic width in [4]. (See also Remark 3.7 below.) A small improvement in the lower bound was obtained by Coja-Oghlan [5]. Additionally, Coja-Oghlan, Efthymiou and Hetterich [6] adapted the methods from [7] to study k-colourability of random regular graphs.

1.1. Hypergraphs

Let $[n]=\{1,2, \ldots, n\}$. Unless otherwise stated, the asymptotic results in this paper are as $n \rightarrow \infty$. Consider the set $\Omega(n, r, m)$ of r-uniform hypergraphs on the vertex set $[n]$ with m edges. Such a hypergraph is defined by its edge set \mathcal{E}, which consists of m distinct r-subsets of n. Let $N=\binom{n}{r}$ denote the total number of r-subsets.

Now let $\mathcal{G}(n, r, m)$ denote the uniform model of a random r-regular hypergraph with m edges. So $\mathcal{G}(n, r, m)$ consists of the set $\Omega(n, r, m)$ equipped with the uniform probability distribution. We write $G \in \mathcal{G}(n, r, m)$ for a random hypergraph chosen uniformly from $\Omega(n, r, m)$. The edge set \mathcal{E} of this random hypergraph may be viewed as a sample of size m chosen uniformly, without replacement, from the set of N possible edges.

Although our main focus is the uniform model \mathcal{G}, it is simpler for many calculations to work with an alternative model. Let $\Omega^{*}(n, r, m)$ denote the set of all r-uniform multi-

https://daneshyari.com/en/article/4656779

Download Persian Version:

https://daneshyari.com/article/4656779

Daneshyari.com

[^0]: E-mail addresses: m.e.dyer@leeds.ac.uk (M. Dyer), alan@random.math.cmu.edu (A. Frieze), c.greenhill@unsw.edu.au (C. Greenhill).
 ${ }^{1}$ Supported by EPSRC Research Grant EP/I012087/1.
 ${ }^{2}$ Partially supported by NSF Grant ccf1013110.
 ${ }^{3}$ Research supported by the Australian Research Council grant DP120100197 and performed during the author's sabbatical at Durham University, UK.

