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1. Introduction

Many results concerning to discretely generated spaces have been shown in [1] and [2]. Theorem 2.6 [2] by
V. Tkachuk and R. Wilson says that if X; is a monotonically normal space, then the box product Oier X;
is discretely generated. Hence, the spaces OR", O(w+1)" and O({¢} Uw)” are discretely generated, for any
cardinal x.

Let V be the countable regular maximal space due to Eric van Douwen [3]. It was shown in [1]| that V
is not discretely generated. Since LJR” is discretely generated and this property is hereditary, there is no
embedding from V to OR”. The authors of [2] then wondered if there were more countable regular spaces
that do not embed into a box product of real lines, that is the motivation of Problem 3.19 in [2]. We
generalize their Example 2.10, part b).
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A space X is called monotonically normal if for every U € 7(X) and « € U thereisaset O(z,U) € 7(x, X)
such that O(x,U) N O(y,V) = 0 implies z € V or y € U. Of course, being monotonically normal implies
normality. Every metric space is monotonically normal. However, there is no relation between being first
countable and monotonically normal. For example, {{} Uw is a monotonically normal non first countable
space. On the other hand, it is well known that the square of the Sorgenfrey line R? is a regular first
countable non normal space, and thus, non monotonically normal. However, the space DRy is discretely
generated by our result.

2. Strategy, notation and terminology

We use standard terminology and follow Engelking [4]. All spaces we consider are assumed to be Hausdorff.
If X is a space then 7(X) is its topology. If X; is a topological space for every t € T, then the box product
Oter X: is the set-theoretic product [[,., X with the topology generated by the family {[[,.,U; : Uy €
7(X3:)}. The set of natural numbers is denoted by w and we use the symbol R for the real line with its usual
topology.

A space X is discretely generated at a point x € X if for any A C X with 2 € A there exists a discrete
set D C A such that x € D. The space X is discretely generated if it is discretely generated at every point
reX.

Let X be a set, A C X”, k a cardinal, S C k and b € X". We denote the support of a € X" respect
to b by suppy(a) = {a € k : a(a) # b(a)}. The restriction of a to S is the element a | S € X9 defined as
(a]S)(s) =a(s), as well as Agp = {a € A: supp,(a) =S} and A[S={a]Se€X:ae A}. We denote
by & the element in C(w + 1) such that for every n € w, &(n) = w. When we talk about the “support”
in O(w + 1), we use supp(a) instead of suppy(a) and Ag instead of Ag.

Also, given a function h € w* and an element a € O(w + 1)¥, we define the neighborhood of a by h to be
the set of the form

Np(a) =0{{a(n)} : n € supp(a)} x O{(h(n),w] : n € w\ supp(a)}.
Finally, we recall the following definitions on w®: For f, g € w*, define f <* g iff In € w Vm > n (f(m) <
g(m)). A family F C w* is <*-bounded if g € w* Vf € F (f <* g). A family F C w* is <*-dominant if
Vg e w” 3f € F (g <* f).

o b=min{|F|: F Cw* is not <*-bounded}
o 0 =min{|F|: F Cw¥ is <*-dominant}

3. Facts and some definitions

Let Sw denote the Stone-Cech compactification of w. If ¢ € fw \ w, then {¢} Uw inherits the subspace
topology of fw.

Remark 1. Let £ € fw \ w, then we have the following for the space {{} U w:

1. U € ¢if and only if £ € U.
2. IfEcUNV, then UNV # 0.

Lemma 2. If a set A C O(w + 1)* satisfies Va € A (Jsupp(a)] = w) and has size less than b, then & ¢ A.
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