On discretely generated box products

CrossMark

Hector Alonzo Barriga-Acosta ${ }^{*, 1}$, Fernando Hernández-Hernández ${ }^{2}$
Posgrado Conjunto en Ciencias Matemáticas, UNAM-UMSNH, Morelia, Mich, Mexico

A R T I C L E I N F O

Article history:
Received 27 April 2016
Received in revised form 30 June 2016
Accepted 6 July 2016
Available online 12 July 2016

MSC:

primary 54B10, 54A20
secondary 54 C 25

Keywords:
Discretely generated
Discrete subsets
First countable
Embedding
Box product
Monotonically normal

Abstract

A topological space X is called discretely generated if for any $A \subseteq X$ and $x \in \bar{A}$ there exists a discrete set $D \subseteq A$ such that $x \in \bar{D}$. We solve the Problems 3.19 and 3.3 in [2]. Problem 3.19: Does the space $\{\xi\} \cup \omega$ embed into a box product of real lines when $\xi \in \beta \omega \backslash \omega$? For any $\xi \in \beta \omega \backslash \omega$, we answer negatively. Problem 3.3: Is any box product of first countable spaces discretely generated? We answer positively by assuming that the spaces are regular.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many results concerning to discretely generated spaces have been shown in [1] and [2]. Theorem 2.6 [2] by V. Tkachuk and R. Wilson says that if X_{t} is a monotonically normal space, then the box product $\square_{t \in T} X_{t}$ is discretely generated. Hence, the spaces $\square \mathbb{R}^{\kappa}, \square(\omega+1)^{\kappa}$ and $\square(\{\xi\} \cup \omega)^{\kappa}$ are discretely generated, for any cardinal κ.

Let \mathcal{V} be the countable regular maximal space due to Eric van Douwen [3]. It was shown in [1] that \mathcal{V} is not discretely generated. Since $\square \mathbb{R}^{\kappa}$ is discretely generated and this property is hereditary, there is no embedding from \mathcal{V} to $\square \mathbb{R}^{\kappa}$. The authors of [2] then wondered if there were more countable regular spaces that do not embed into a box product of real lines, that is the motivation of Problem 3.19 in [2]. We generalize their Example 2.10, part b).

[^0]A space X is called monotonically normal if for every $U \in \tau(X)$ and $x \in U$ there is a set $O(x, U) \in \tau(x, X)$ such that $O(x, U) \cap O(y, V)=\emptyset$ implies $x \in V$ or $y \in U$. Of course, being monotonically normal implies normality. Every metric space is monotonically normal. However, there is no relation between being first countable and monotonically normal. For example, $\{\xi\} \cup \omega$ is a monotonically normal non first countable space. On the other hand, it is well known that the square of the Sorgenfrey line \mathbb{R}_{l}^{2} is a regular first countable non normal space, and thus, non monotonically normal. However, the space $\square \mathbb{R}_{l}^{\omega}$ is discretely generated by our result.

2. Strategy, notation and terminology

We use standard terminology and follow Engelking [4]. All spaces we consider are assumed to be Hausdorff. If X is a space then $\tau(X)$ is its topology. If X_{t} is a topological space for every $t \in T$, then the box product $\square_{t \in T} X_{t}$ is the set-theoretic product $\prod_{t \in T} X_{t}$ with the topology generated by the family $\left\{\prod_{t \in T} U_{t}: U_{t} \in\right.$ $\left.\tau\left(X_{t}\right)\right\}$. The set of natural numbers is denoted by ω and we use the symbol \mathbb{R} for the real line with its usual topology.

A space X is discretely generated at a point $x \in X$ if for any $A \subseteq X$ with $x \in \bar{A}$ there exists a discrete set $D \subseteq A$ such that $x \in \bar{D}$. The space X is discretely generated if it is discretely generated at every point $x \in X$.

Let X be a set, $A \subseteq X^{\kappa}, \kappa$ a cardinal, $S \subseteq \kappa$ and $b \in X^{\kappa}$. We denote the support of $a \in X^{\kappa}$ respect to b by $\operatorname{supp}_{b}(a)=\{\alpha \in \kappa: a(\alpha) \neq b(\alpha)\}$. The restriction of a to S is the element $a \upharpoonright S \in X^{S}$ defined as $(a \upharpoonright S)(s)=a(s)$, as well as $A_{S, b}=\left\{a \in A: \operatorname{supp}_{b}(a)=S\right\}$ and $A \upharpoonright S=\left\{a \upharpoonright S \in X^{S}: a \in A\right\}$. We denote by $\vec{\omega}$ the element in $\square(\omega+1)^{\omega}$ such that for every $n \in \omega, \vec{\omega}(n)=\omega$. When we talk about the "support" in $\square(\omega+1)^{\omega}$, we use $\operatorname{supp}(a)$ instead of $\operatorname{supp}_{\vec{\omega}}(a)$ and A_{S} instead of $A_{S, \vec{\omega}}$.

Also, given a function $h \in \omega^{\omega}$ and an element $a \in \square(\omega+1)^{\omega}$, we define the neighborhood of a by h to be the set of the form

$$
N_{h}(a)=\square\{\{a(n)\}: n \in \operatorname{supp}(a)\} \times \square\{(h(n), \omega]: n \in \omega \backslash \operatorname{supp}(a)\} .
$$

Finally, we recall the following definitions on ω^{ω} : For $f, g \in \omega^{\omega}$, define $f \leq^{*} g$ iff $\exists n \in \omega \forall m \geq n(f(m) \leq$ $g(m)$). A family $\mathcal{F} \subseteq \omega^{\omega}$ is \leq^{*}-bounded if $\exists g \in \omega^{\omega} \forall f \in \mathcal{F}\left(f \leq^{*} g\right)$. A family $\mathcal{F} \subseteq \omega^{\omega}$ is \leq^{*}-dominant if $\forall g \in \omega^{\omega} \exists f \in \mathcal{F}\left(g \leq^{*} f\right)$.

- $\mathfrak{b}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega}\right.$ is not \leq^{*}-bounded $\}$
- $\mathfrak{d}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega}\right.$ is \leq^{*}-dominant $\}$

3. Facts and some definitions

Let $\beta \omega$ denote the Stone-Čech compactification of ω. If $\xi \in \beta \omega \backslash \omega$, then $\{\xi\} \cup \omega$ inherits the subspace topology of $\beta \omega$.

Remark 1. Let $\xi \in \beta \omega \backslash \omega$, then we have the following for the space $\{\xi\} \cup \omega$:

1. $U \in \xi$ if and only if $\xi \in \bar{U}$.
2. If $\xi \in \bar{U} \cap \bar{V}$, then $U \cap V \neq \emptyset$.

Lemma 2. If a set $A \subseteq \square(\omega+1)^{\omega}$ satisfies $\forall a \in A(|\operatorname{supp}(a)|=\omega)$ and has size less than \mathfrak{b}, then $\vec{\omega} \notin \bar{A}$.

https://daneshyari.com/en/article/4657790

Download Persian Version:
https://daneshyari.com/article/4657790

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hector.alonsus@gmail.com (H.A. Barriga-Acosta), fhernandez@fismat.umich.mx (F. Hernández-Hernández).
 1 The first author's research has been supported by CONACYT, Scholarship 298353.
 ${ }^{2}$ The second author acknowledges support from CONACYT, grant CB2011-169078-F.

