Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

## On discretely generated box products

Hector Alonzo Barriga-Acosta $^{\ast,1},$  Fernando Hernández-Hernández $^2$ 

Posgrado Conjunto en Ciencias Matemáticas, UNAM-UMSNH, Morelia, Mich, Mexico

A R T I C L E I N F O

Article history: Received 27 April 2016 Received in revised form 30 June 2016 Accepted 6 July 2016 Available online 12 July 2016

MSC: primary 54B10, 54A20 secondary 54C25

Keywords: Discretely generated Discrete subsets First countable Embedding Box product Monotonically normal

### 1. Introduction

Many results concerning to discretely generated spaces have been shown in [1] and [2]. Theorem 2.6 [2] by V. Tkachuk and R. Wilson says that if  $X_t$  is a monotonically normal space, then the box product  $\Box_{t \in T} X_t$  is discretely generated. Hence, the spaces  $\Box \mathbb{R}^{\kappa}$ ,  $\Box (\omega + 1)^{\kappa}$  and  $\Box (\{\xi\} \cup \omega)^{\kappa}$  are discretely generated, for any cardinal  $\kappa$ .

Let  $\mathcal{V}$  be the countable regular maximal space due to Eric van Douwen [3]. It was shown in [1] that  $\mathcal{V}$  is not discretely generated. Since  $\Box \mathbb{R}^{\kappa}$  is discretely generated and this property is hereditary, there is no embedding from  $\mathcal{V}$  to  $\Box \mathbb{R}^{\kappa}$ . The authors of [2] then wondered if there were more countable regular spaces that do not embed into a box product of real lines, that is the motivation of Problem 3.19 in [2]. We generalize their Example 2.10, part b).

 $^1\,$  The first author's research has been supported by CONACYT, Scholarship 298353.









A topological space X is called *discretely generated* if for any  $A \subseteq X$  and  $x \in \overline{A}$  there exists a discrete set  $D \subseteq A$  such that  $x \in \overline{D}$ . We solve the Problems 3.19 and 3.3 in [2]. Problem 3.19: Does the space  $\{\xi\} \cup \omega$  embed into a box product of real lines when  $\xi \in \beta \omega \setminus \omega$ ? For any  $\xi \in \beta \omega \setminus \omega$ , we answer negatively. Problem 3.3: Is any box product of first countable spaces discretely generated? We answer positively by assuming that the spaces are regular.

© 2016 Elsevier B.V. All rights reserved.



<sup>\*</sup> Corresponding author.

E-mail addresses: hector.alonsus@gmail.com (H.A. Barriga-Acosta), fhernandez@fismat.umich.mx (F. Hernández-Hernández).

 $<sup>^2\,</sup>$  The second author acknowledges support from CONACYT, grant CB2011-169078-F.

A space X is called *monotonically normal* if for every  $U \in \tau(X)$  and  $x \in U$  there is a set  $O(x, U) \in \tau(x, X)$ such that  $O(x, U) \cap O(y, V) = \emptyset$  implies  $x \in V$  or  $y \in U$ . Of course, being monotonically normal implies normality. Every metric space is monotonically normal. However, there is no relation between being first countable and monotonically normal. For example,  $\{\xi\} \cup \omega$  is a monotonically normal non first countable space. On the other hand, it is well known that the square of the Sorgenfrey line  $\mathbb{R}^2_l$  is a regular first countable non normal space, and thus, non monotonically normal. However, the space  $\Box \mathbb{R}^{\omega}_l$  is discretely generated by our result.

### 2. Strategy, notation and terminology

We use standard terminology and follow Engelking [4]. All spaces we consider are assumed to be Hausdorff. If X is a space then  $\tau(X)$  is its topology. If  $X_t$  is a topological space for every  $t \in T$ , then the *box product*  $\Box_{t\in T}X_t$  is the set-theoretic product  $\prod_{t\in T}X_t$  with the topology generated by the family  $\{\prod_{t\in T}U_t : U_t \in \tau(X_t)\}$ . The set of natural numbers is denoted by  $\omega$  and we use the symbol  $\mathbb{R}$  for the real line with its usual topology.

A space X is discretely generated at a point  $x \in X$  if for any  $A \subseteq X$  with  $x \in \overline{A}$  there exists a discrete set  $D \subseteq A$  such that  $x \in \overline{D}$ . The space X is discretely generated if it is discretely generated at every point  $x \in X$ .

Let X be a set,  $A \subseteq X^{\kappa}$ ,  $\kappa$  a cardinal,  $S \subseteq \kappa$  and  $b \in X^{\kappa}$ . We denote the support of  $a \in X^{\kappa}$  respect to b by  $supp_b(a) = \{\alpha \in \kappa : a(\alpha) \neq b(\alpha)\}$ . The restriction of a to S is the element  $a \upharpoonright S \in X^S$  defined as  $(a \upharpoonright S)(s) = a(s)$ , as well as  $A_{S,b} = \{a \in A : supp_b(a) = S\}$  and  $A \upharpoonright S = \{a \upharpoonright S \in X^S : a \in A\}$ . We denote by  $\overrightarrow{\omega}$  the element in  $\Box(\omega + 1)^{\omega}$  such that for every  $n \in \omega$ ,  $\overrightarrow{\omega}(n) = \omega$ . When we talk about the "support" in  $\Box(\omega + 1)^{\omega}$ , we use supp(a) instead of  $supp_{\overrightarrow{\omega}}(a)$  and  $A_S$  instead of  $A_{S,\overrightarrow{\omega}}$ .

Also, given a function  $h \in \omega^{\omega}$  and an element  $a \in \Box (\omega + 1)^{\omega}$ , we define the *neighborhood of a by h* to be the set of the form

$$N_h(a) = \Box\{\{a(n)\} : n \in supp(a)\} \times \Box\{(h(n), \omega] : n \in \omega \setminus supp(a)\}.$$

Finally, we recall the following definitions on  $\omega^{\omega}$ : For  $f, g \in \omega^{\omega}$ , define  $f \leq g$  iff  $\exists n \in \omega \ \forall m \geq n \ (f(m) \leq g(m))$ . A family  $\mathcal{F} \subseteq \omega^{\omega}$  is  $\leq bounded$  if  $\exists g \in \omega^{\omega} \ \forall f \in \mathcal{F} \ (f \leq g)$ . A family  $\mathcal{F} \subseteq \omega^{\omega}$  is  $\leq bounded$  if  $\exists g \in \omega^{\omega} \ \forall f \in \mathcal{F} \ (f \leq g)$ . A family  $\mathcal{F} \subseteq \omega^{\omega}$  is  $\leq bounded$  if  $\exists g \in \omega^{\omega} \ \forall f \in \mathcal{F} \ (f \leq g)$ .

- $\mathfrak{b} = min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \text{ is not } \leq^*\text{-bounded}\}$
- $\mathfrak{d} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \text{ is } \leq^*\text{-dominant}\}$

#### 3. Facts and some definitions

Let  $\beta \omega$  denote the Stone–Čech compactification of  $\omega$ . If  $\xi \in \beta \omega \setminus \omega$ , then  $\{\xi\} \cup \omega$  inherits the subspace topology of  $\beta \omega$ .

**Remark 1.** Let  $\xi \in \beta \omega \setminus \omega$ , then we have the following for the space  $\{\xi\} \cup \omega$ :

1.  $U \in \xi$  if and only if  $\xi \in \overline{U}$ . 2. If  $\xi \in \overline{U} \cap \overline{V}$ , then  $U \cap V \neq \emptyset$ .

**Lemma 2.** If a set  $A \subseteq \Box(\omega+1)^{\omega}$  satisfies  $\forall a \in A$  ( $|supp(a)| = \omega$ ) and has size less than  $\mathfrak{b}$ , then  $\overrightarrow{\omega} \notin \overline{A}$ .

Download English Version:

# https://daneshyari.com/en/article/4657790

Download Persian Version:

https://daneshyari.com/article/4657790

Daneshyari.com