On a nontrivial knot projection under $(1,3)$ homotopy

Noboru Ito ${ }^{\text {a,*,1 }}$, Yusuke Takimura ${ }^{\text {b }}$
a Waseda Institute for Advanced Study, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo, 169-8050, Japan
b Gakushuin Boys' Junior High School, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-0031, Japan

A R T I C L E I N F O

Article history:

Received 30 March 2016
Accepted 13 July 2016
Available online 18 July 2016

MSC:

57Q35
57 M 25
Keywords:
Knot projections
Östlund conjecture Reidemeister moves Spherical curves

Abstract

In 2001, Östlund formulated the question: are Reidemeister moves of types 1 and 3 sufficient to describe a homotopy from any generic immersion of a circle in a two-dimensional plane to an embedding of the circle? The positive answer to this question was treated as a conjecture (Östlund conjecture). In 2014, Hagge and Yazinski disproved the conjecture by showing the first counterexample with a minimal crossing number of 16 . This example is naturally extended to counterexamples with given even minimal crossing numbers more than 14. This paper obtains the first counterexample with a minimal crossing number of 15 . This example is naturally extended to counterexamples with given odd minimal crossing numbers more than 13.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A knot projection is the image of a generic immersion of a circle into a 2 -sphere. Thus, any self-intersection of a knot projection is a transverse double point, which is simply called a double point. A trivial knot projection is a knot projection with no double points. Any two knot projections are related by a finite sequence of Reidemeister moves of types 1,2 , and 3 . Here, Reidemeister moves of types 1,2 , and 3 , denoted by RI, RII, and RIII, are defined in Fig. 1. If two knot projections P and P^{\prime} are related by a finite sequence generated by RI and RIII, then P and P^{\prime} are (1,3) homotopic. The relation becomes an equivalence relation and is called $(1,3)$ homotopy.

In 2001 [2], Östlund formulated a question as follows:
Östlund Question. Are Reidemeister moves RI and RIII sufficient to obtain a homotopy from any generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ to an embedding?

[^0]

Fig. 1. RI, RII, and RIII.

Fig. 2. Hagge-Yazinski's example $P_{H Y}$.

Fig. 3. A knot projection.

In [1], Hagge and Yazinski obtained an answer to this question as follows ([1] treated the positive answer to Östlund's question as "his conjecture", and thus, we call it Östlund Conjecture):

Hagge-Yazinski Theorem. A homotopy from the trivial knot projection to $P_{H Y}$ that appears as Fig. 2 cannot be obtained by a finite sequence generated by Reidemeister moves RI and RIII.

For a given knot projection P, let $c_{\min }(P)=\min \left\{\right.$ the number of double points of $P^{\prime} \mid P^{\prime}$ and P are related by a finite sequence generated by RI and RIII $\}$. We call $c_{\text {min }}(P)$ the minimal crossing number of P.

As a step further, it is easy to find a vast generalization of the Hagge-Yazinski Theorem; there exists an infinite family of counterexamples of the Östlund Conjecture, i.e., non-trivial knot projections under (1, 3) homotopy (Remark 1). However, every knot projection of this family has an even minimal crossing number.

In this paper, we find a counterexample of the conjecture with an odd minimal crossing number. We show the non-triviality of the example by using Hagge-Yazinski techniques [1]. This example is naturally extended to an infinite family of knot projections, each of which is a knot projection with a given odd minimal crossing number. Similar to Remark 1, Theorem 1 naturally implies a knot projection P such that $c_{\text {min }}(P)=2 i+13\left(i \in \mathbb{Z}_{>0}\right)$.

Theorem 1. The knot projection, shown in Fig. 3, and the trivial knot projection cannot be (1, 3) homotopic.

2. Proof of Theorem 1

As shown in Fig. 4, any P_{0} can be decomposed into seven boxes and arcs with no double points. Each box is equivalent to $[0,1] \times[0,1]$ under sphere isotopy and in each box, there is a part of a knot projection, called (3, 3)-tangle (cf. Definition 1).

Definition $1((s, t)$-tangle). Let s and t be positive integers such that $s+t$ is even. An unoriented (s, t)-tangle is the image of a generic immersion of $(s+t) / 2$ arcs into $[0,1] \times[0,1]$ such that:

https://daneshyari.com/en/article/4657793

Download Persian Version:
https://daneshyari.com/article/4657793

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: noboru@moegi.waseda.jp, noboru@ms.u-tokyo.ac.jp (N. Ito), Yusuke.Takimura@gakushuin.ac.jp (Y. Takimura).
 ${ }^{1}$ Current address: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan.

