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Lomonaco and Kauffman introduced a knot mosaic system to give a precise and 
workable definition of a quantum knot system, the states of which are called 
quantum knots. This paper is inspired by an open question about the knot mosaic 
enumeration suggested by them. A knot n-mosaic is an n ×n array of 11 mosaic tiles 
representing a knot or a link diagram by adjoining properly that is called suitably 
connected. The total number of knot n-mosaics is denoted by Dn which is known 
to grow in a quadratic exponential rate. In this paper, we show the existence of the 
knot mosaic constant δ = limn→∞ D

1
n2

n and prove that

4 ≤ δ ≤ 5 +
√

13
2

(≈ 4.303).

© 2016 Elsevier B.V. All rights reserved.

1. Preliminaries

The quantum knot system was developed by Lomonaco and Kauffman to explain how to make quan-
tum information versions of mathematical structures in [4,5]. They build a knot mosaic system to set the 
foundation for a quantum knot system, based on the planar projections of knots and the Reidemeister 
moves.

Throughout this paper the term ‘knot’ means either a knot or a link. An example of a knot mosaic is 
shown in Fig. 1 (a). Knot mosaics are constructed by using 11 mosaic tiles, listed in Fig. 1 (b).

This paper is inspired by an open question (9) about the knot mosaic enumeration proposed in [5]. The 
enumeration of knot mosaic is not only an interesting problem in its own right but is also of considerable 
importance in the quantum knot theory. Let Dn denote the total number of knot n-mosaics. The author, 
Hong, Lee and Lee announced several results on Dn in the series of papers [1–3,7]. Based upon the results, 
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Fig. 1. An example of a knot mosaic and 11 mosaic tiles.

Dn is known to grow in a quadratic exponential rate. We consider the behavior of the growth rate. The 
limit, if it exists,

δ = lim
n→∞

D
1
n2

n

is called the knot mosaic constant.

Theorem 1. The knot mosaic constant δ exists. Furthermore,

4 ≤ δ ≤ 5 +
√

13
2 (≈ 4.303).

As a previous result, lower and upper bounds on Dn for n ≥ 3 were established as follows in [1]:

2
275(9 · 6n−2 + 1)2 · 2(n−3)2 ≤ Dn ≤ 2

275(9 · 6n−2 + 1)2 · (4.4)(n−3)2 (∗)

These bounds suggested that δ lies between 2 and 4.4.
This paper is organized as follows. In Section 2, we give precise definition of knot mosaics with a slight 

generalization and previously known results about the enumeration of knot mosaics. In Section 3, the 
existence of the knot mosaic constant δ is provided by applying an extended version of Fekete’s Lemma. In 
Section 4, we rigorously find lower and upper bounds of δ with heavy reliance on the main theorem of [7].

2. Enumeration of knot mosaics

We begin by presenting the basic notion of knot mosaics and then introduce previously known results 
about the enumeration of knot mosaics.

Definition 1. For positive integers m and n, an (m, n)-mosaic is an m × n array M = (Mij) of 11 mosaic 
tiles depicted in Fig. 1 (b).

This definition is a rectangular version of the definition of an n-mosaic that is an n × n array of mosaic 
tiles. Obviously the set of all (m, n)-mosaics has 11mn elements.

A connection point of a mosaic tile is defined as the midpoint of a mosaic tile edge that is also the 
endpoint of a curve drawn on the tile. Then the first mosaic tile has zero, the next six tiles with exactly one 
curve inside have two, and the last four tiles have four connect points. A mosaic is called suitably connected
if any pair of mosaic tiles lying immediately next to each other in either the same row or the same column 
have or do not have connection points simultaneously on their common edge.
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