Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On product of p-sequential spaces

B.A. Boljiev

Institute of Mathematics and CS, University of Latvia, Raina Bulv. 29, Riga LV-1459, Latvia

ARTICLE INFO

Article history: Received 28 December 2014 Accepted 16 April 2015 Available online 18 January 2016

MSC: 54A10 54A30

Keywords: p-compact p-sequential spaces ABSTRACT

The product of finitely many regular *p*-compact *p*-sequential spaces is *p*-compact *p*-sequential for any free ultrafilter *p* as it follows from [5]. In the paper is produced an example of a Hausdorff *p*-compact *p*-sequential space whose square is not *p*-sequential. It is also given an example of a space which is *sP*-radial, *wP*-radial, *vwP*-radial for any $P \subset \mu(\tau)$ but its square is neither *sP*-radial nor *wP*-radial nor *vwP*-radial space.

@ 2015 Published by Elsevier B.V.

All spaces in this paper are assumed to be Hausdorff. Any infinite cardinal is associated with the initial ordinal of the same power. Let τ be any infinite cardinal. The Stone–Čech compactification of the discrete space τ is denoted as $\beta\tau$ and its remainder $\beta\tau \setminus \tau$ is identified with the set of all free ultrafilters on τ and $\mu(\tau) = \{p \in \beta\tau \setminus \tau : |A| = \tau \text{ for each } A \in p\}$ will denote the set of all uniform ultrafilters on τ [3].

Bernstein in [2] introduced the notions of a *p*-limit point and a *p*-compact space for any free ultrafilter *p* on ω , i.e. on the discrete space of positive integers. Kombarov [6] introduced the notions of *P*-compactness and *P*-sequentiality, where $P \subset \beta \omega \setminus \omega$ is a nonempty set of free ultrafilters on ω and he proves in [7] that the countable product of regular *p*-compact *p*-sequential spaces is a *p*-compact *p*-sequential one. Saks [4] generalizes the notion of *p*-limit to nets as follows: if $p \in \beta \tau \setminus \tau$ and $(x_{\alpha} : \alpha < \tau)$ is a τ -sequence in *X*, then a point *x* is a *p*-limit point of $(x_{\alpha} : \alpha < \tau)$, if for every neighborhood *O* of $x \{\alpha : x_{\alpha} \in O\} \in p$, denoted as x = p-lim x_{α} and he defines there a *p*-compact space as a space in which every τ -sequence has a *p*-limit point (or shortly: τ -sequence *p*-converges).

Following Kombarov [6] we call a space (X, σ) to be *p*-sequential or in other terminology known as a *p*-pseudo-radial space (see [5]), if for any nonclosed $A \subset X$ there is a point $x \notin A$ which is a *p*-limit point for some τ -sequence $(x_{\alpha} : \alpha < \tau) \subset A$.

Kočinac proves in [5] the theorem which implies that the product of finitely many regular p-compact p-sequential spaces is again a p-compact p-sequential space. We construct here two Hausdorff p-compact

E-mail addresses: boljievb@mail.ru, buras.boljiev@lumii.lv.

p-sequential spaces whose product is not p-sequential which will mean that the requirement of regularity in the mentioned theorems of Kombarov and Kočinac is essential and this construction allows to create a p-compact p-sequential space whose square is not p-sequential. To produce these spaces we will use terminology and constructions from [1].

Let $\{X_{\alpha} : \alpha < \tau\}$ be a family of pairwise disjoint sets each of power τ . Assume $\{y_{\alpha} : \alpha < \tau\}$ is a family of pairwise different objects with none of them in $T = \bigcup \{X_{\alpha} : \alpha < \tau\}$. We put $Y_{\alpha} = X_{\alpha} \cup \{y_{\alpha}\}$, $Y = \bigcup \{Y_{\alpha} : \alpha < \tau\}$ and $Q = \{y_{\alpha} : \alpha < \tau\}$. Let z^* be some object not in Y. We set $Z = T \cup \{z^*\}$ and define a mapping φ from Y onto Z by the following rule: $\varphi(y) = y$ if $y \in T$ and $\varphi(y) = z^*$ if $y \in Q$. We endow each Y_{α} with the following topology σ_{α} : if $A \subset X_{\alpha}$ then $A \in \sigma_{\alpha}$ and if M is any subset of X_{α} of power less than τ then $Y_{\alpha} \setminus M \in \sigma_{\alpha}$. So $(Y_{\alpha}, \sigma_{\alpha})$ turns to be a topological space with the only nonisolated point y_{α} . W.l.o.g. one can consider $p \in \mu(\tau)$. Thus, the topological space $(Y_{\alpha}, \sigma_{\alpha})$ is p-sequential for any $p \in \mu(\tau)$. Topology σ on Y is defined as a free union of a family of topologies $\{\sigma_{\alpha} : \alpha < \tau\}$, so the space (Y, σ) becomes p-sequential. We equip the set Z with the factor topology with respect to the mapping φ . So the space Z is a p-sequential space as a factor image of a p-sequential space [5] and $|Z| = \tau$. The space Z is an analogue of the Frécher–Urysohn fan, extended to any cardinal.

Let S be a set consisting of all possible τ -sequences $(x_{\alpha} : \alpha < \tau)$ in Z such that $x_{\alpha} \in \varphi(X_{\alpha})$ for each $\alpha < \tau$. It is easily seen that $|S| = 2^{\tau}$. For any τ -sequence $M = (x_{\alpha} : \alpha < \tau)$, $M \in S$ let $F_M = \{\{x_{\alpha} : \alpha > \beta\}, \beta < \tau\}$. It is clear that F_M is a centered system of subsets of power τ and the family $\{F_M : M \in S\}$ forms a τ -singular system at z^* (see [1]).

Let a_M be a new object not in M. We set $M' = M \cup \{a_M\}$ and equip M' with a topology where each subset of M is open and the family $\{\{a_M \cup \{x_\alpha : \alpha > \beta\}\}, \beta < \tau\}$ is declared to be a base of open neighborhoods of the point a_M . Obviously that $|\{x_\alpha : \alpha < \beta\}| < \tau$ for any $\beta < \tau$ so M' becomes p-sequential for any $p \in \mu(\tau)$ with one nonisolated point a_M . Putting $W = \cup\{M' : M \in S\}$ endowed with the topology of a free union one can transform the topological space W into some space V with one nonisolated point t^* by repeating the same steps which were used to transform the space Y into the space Z. In this way we get two spaces Z and V each being p-sequential. Now using Theorem 3.5 in [1] we obtain the following inequality: $t((z^*, t^*), Z \times V) > \tau$ and taking into account that the tightness of a p-sequential space does not exceed τ [5] one can say that the space $Z \times V$ is not p-sequential. These two spaces Z and V are not p-compact so to get one of the required examples it is enough to create two Hausdorff p-compact p-sequential extensions of Z and V. Let (X, σ) be any topological space.

Definition 1. A subset $O \subset X$ is called *p*-sequentially open if $x \in O$ and x = p-lim x_{α} for some τ -sequence $(x_{\alpha} : \alpha < \tau)$ imply that $\{\alpha : x_{\alpha} \in O\} \in p$.

It is clear that the intersection of a finite number of p-sequentially open sets is p-sequentially open and the union of any number of p-sequentially open sets is again p-sequentially open so we can say that the set of all p-sequentially open sets in (X, σ) forms some topology which will be denoted by symbol σ_p . Obviously that each open set is p-sequentially open so we get the following statement.

Proposition 1. (X, σ_p) is a topological space and $\sigma \subset \sigma_p$.

For every subset $A \subset X$ we define the following set $p(A) = A \cup \{x \in X : \text{ there is some } \tau \text{-sequence} \\ (x_{\alpha} : \alpha < \tau) \subset A \text{ such that } x = p \text{-lim } x_{\alpha} \}.$

Definition 2. A subset $A \subset X$ is said to be *p*-sequentially closed iff A = p(A).

Proposition 2. A subset A in a topological space (X, σ) is p-sequentially closed iff $X \setminus A$ is p-sequentially open.

Download English Version:

https://daneshyari.com/en/article/4657856

Download Persian Version:

https://daneshyari.com/article/4657856

Daneshyari.com