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In this paper, we introduce a new theoretical model to calculate the fractal 
dimension especially appropriate for curves. This is based on the novel concept of 
induced fractal structure on the image set of any curve. Some theoretical properties 
of this new definition of fractal dimension are provided as well as a result which 
allows to construct space-filling curves. We explore and analyze the behavior of this 
new fractal dimension compared to classical models for fractal dimension, namely, 
both the Hausdorff dimension and the box-counting dimension. This analytical 
study is illustrated through some examples of space-filling curves, including the 
classical Hilbert’s curve. Finally, we contribute some results linking this fractal 
dimension approach with the self-similarity exponent for random processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The word fractal, which derives from the Latin term frangere (that means “to break”), provided a 
novel concept in mathematics since Benoît Mandelbrot first introduced it in the early eighties [22]. Since 
then, both the study and the identification of fractal patterns have become more and more important due 
to the large number of applications to diverse scientific fields where fractals have been found, including 
computation, physics, economics and statistics among them (see [12,14,18,19]). Moreover, there has also 
been a particular interest in the application of fractals to social sciences (see for example [10] and its 
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references). Nevertheless, some interesting non-standard objects had appeared previously as mathematical 
monsters, due to their novel and counter-intuitive analytical properties. Thus, they were frequently shown 
as counterexamples or exceptional objects provided by some remarkable mathematicians including Peano 
and Hilbert space-filling curves [21,24].

Fractals objects have been studied from different points of view, and the main tool that has been applied 
to study them is the fractal dimension, since it is their main invariant which shows some useful information 
about their complexity and irregularities. In particular, topology allows the study of this class of non-linear 
objects by means of fractal structures. They were first sketched in [6] and then formally defined and applied 
in [1] to characterize non-Archimedeanly quasi-metrizable spaces. This concept has allowed to formalize 
some topics on fractal theory from both theoretical and applied points of view. A fractal structure is just a 
countable collection of coverings of a given subset which provides better approximations to the whole space 
as we explore deeper stages, called levels. Thus, if we analyze the definition of the box-counting dimension, 
then we can observe that fractal structures provide a suitable context where new models of fractal dimension 
can be developed.

On the other hand, given any patch of the plane, a plane-filling curve is a continuous curve which meets 
every point in that patch. Thus, though the Peano plane-filling curve appeared in 1890, the later Hilbert’s 
curve results also quite interesting, since it has no self-intersections nor touching points at any stage of its 
construction (that will be explain in detail later by means of fractal structures). In this way, a wide variety 
of space-filling curves were studied after that, though the example proposed by Hilbert still remains one of 
the most famous, since he provided one of the first graphical visualizations of a fractal in his original 2-page 
paper Über die stetige Abbildung einer Linie auf ein Flächenstück (1891) [21]. This curve was first sketched 
during a mathematical annual meeting in Bremen (Germany), where Hilbert and G. Cantor (1845–1918) 
were working on the foundation of the German mathematical society.

Our main purpose is to introduce a new theoretical model of fractal dimension for any fractal structure 
that becomes especially appropriate to analyze fractal patterns on curves. Additionally, we will explore some 
interesting connections between that fractal dimension approach and the self-similarity exponent of random 
processes.

The organization of this paper is as follows. In Section 2, we recall some preliminary definitions, notations 
and results including box-counting dimension, Hausdorff dimension, fractal structures and fractal dimension 
for a fractal structure. In Section 3, we provide a new theoretical model of fractal dimension especially 
appropriate to explore both the complexity and the fractal pattern of curves which is based on a novel 
concept of an induced fractal structure. This new procedure presents some advantages with respect to the 
classical models that may be applied for the same purpose, since it takes also into account the underlying 
structure of the curve. In addition to that, this is calculated on the image set of the curve, in contrast 
to the Hausdorff dimension and the box-counting dimension which are both calculated for its graph. We 
also show some theoretical properties of this fractal dimension for curves. In Subsection 3.1, we provide a 
theorem which allows us to generate space-filling curves among other applications. In Subsection 3.2, we 
explain in detail how to iteratively approach both the classical Hilbert’s curve and a modified Hilbert’s 
curve using fractal structures. We also calculate, compare and explain the values obtained for their classical 
fractal dimensions as well as for their new fractal dimensions. These examples show that the new model of 
fractal dimension we introduce in this paper results more accurate to distinguish and classify space-filling 
curves generated through different ways of construction. A curve which fills the whole Sierpiński’s gasket 
is also explored from the point of view of fractal dimension (see Subsection 3.3). Finally, in Section 4, we 
show some theoretical results connecting the fractal dimension with the self-similarity exponent of random 
processes.
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