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In this paper we completely describe the Deligne groupoid of the Lawrence–Sullivan 
interval as two parallel rational lines.
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0. Introduction

Let MC(L) be the set of Maurer–Cartan elements of a differential graded Lie algebra L over Q which 
is assumed the base field henceforth. The group L0 endowed with the Baker–Campbell–Hausdorff product, 
acts on MC(L) as “a group of gauge transformations on flat connections” (see next section for precise and 
explicit terms). The groupoid associated to this action, known as the Deligne groupoid, was first introduced 
in [5] as a fundamental object to understand the Deligne principle by which every deformation functor is 
governed precisely by such a groupoid. See also [4,6].

On the other hand, the Lawrence–Sullivan interval [8] is a complete differential free graded Lie algebra 
L = (L̂(a, b, x), ∂) generated by two Maurer–Cartan elements a, b and by an element x of degree 0 joining 
a and b via the above action (see also next section). This particular object plays an essential role on the 
topological realization of (complete) differential graded Lie algebras [2,3] as well as on their homotopical 
behavior [1,10].

In this note, we explicitly describe the Deligne groupoid of L and prove the following (see Theorem 2.3
for a precise statement):

Theorem 0.1. The Deligne groupoid of L is isomorphic to two disjoint copies of the rationals.
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This readily implies that its nerve is a simplicial set homotopy equivalent to two disjoint points, which 
retrieves by a different argument the known geometrical realization of the Lawrence–Sullivan interval [2, 
Ex. 5.6], [3, §4].

As another consequence we also obtain is that any perturbation of L produces an isomorphic DGL.

Theorem 0.2. Let z ∈ MC(L). Then, (L̂(a, b, x), ∂z) in which ∂z = ∂ + adz, is isomorphic to L.

1. Preliminaries

Recall that a graded Lie algebra is a Z-graded vector space L = ⊕p∈ZLp endowed with a bilinear Lie 
bracket satisfying antisymmetry [x, y] = −(−1)|x||y|[y, x] and Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0 .

Here |x| denotes the degree of x. A differential graded Lie algebra or DGL is a graded Lie algebra L together 
with a linear derivation ∂ of degree −1 such that ∂2 = 0.

A Maurer–Cartan element of a given DGL is an element z ∈ L−1 satisfying ∂z + 1
2 [z, z] = 0. We denote 

by MC(L) the set of Maurer–Cartan elements. These are preserved by DGL morphisms. Given z ∈ MC(L), 
the perturbed derivation ∂z = ∂ + adz is again a differential on L.

The completion L̂ of a graded Lie algebra L is the projective limit

L̂ = lim←−−
n

L/Ln

where L1 = L and for n ≥ 2, Ln = [L, Ln−1]. A Lie algebra L is called complete if L is isomorphic to its 
completion. The completion of the free Lie algebra generated by the graded vector space V is denoted by 
L̂(V ).

Given L a complete DGL, the gauge action of L0 on MC(L) determines an equivalence relation among 
Maurer–Cartan elements defined as follows (see for instance [9, §4] or Proposition 1.2 below): given x ∈ L0
and z ∈ MC(L),

xG z = eadx(z) − eadx − 1
adx

(∂x).

Here and from now on, the integer 1 inside an operator will denote the identity. Explicitly,

xG z =
∑
i≥0

adi
x(z)
i! −

∑
i≥0

adi
x(∂x)

(i + 1)! .

The Deligne groupoid of L has MC(L) as objects, and elements x ∈ L0 as arrows from x G z to z. Geometri-
cally [7,8], interpreting Maurer–Cartan elements as points in a space, one thinks of x as a flow taking x G z
to z in unit time. In topological terms, the points z and x G z are in the same path component.

Definition 1.1. ([8]) The Lawrence–Sullivan interval is the complete free DGL

L = (L̂(a, b, x), ∂),

in which a and b are Maurer–Cartan elements, x is of degree 0 and

∂x = adxb +
∞∑

n=0

Bn

n! adn
x(b− a) = adxb + adx

eadx − 1(b− a) (1)
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