ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Completely ω -balanced topological groups

ar Applica

Hugo Juárez-Anguiano^{a,1}, Iván Sánchez^{b,*}

 ^a Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, C.P. 09340, Mexico, D.F., Mexico
^b Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Campus de Riu Sec, 12071 Castellón, Spain

ARTICLE INFO

Article history: Received 7 December 2015 Received in revised form 4 March 2016 Accepted 10 March 2016

MSC: 54A25 54H11 54B10

Keywords: Strongly realcompact Strongly Dieudonné-complete Strongly δ -complete ω -narrow Completely ω -balanced ω -balanced

ABSTRACT

We show that a topological group G admits a homeomorphic embedding as a subgroup into a product of strongly metrizable groups if and only if G is completely ω -balanced. Using this fact we obtain a characterization of strongly δ -complete topological groups, i.e., closed subgroups of a product of strongly metrizable groups. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

Having in mind the papers [3,4], the authors initiated the study of strongly δ -complete groups [5], i.e., the class of topological groups that can be embedded as closed subgroups into a product of strongly metrizable groups.

The notion of strong δ -completeness is between strong realcompactness and strong Dieudonnécompleteness (see [8,6]) in the following sense: every strongly realcompact group is strongly δ -complete and each strongly δ -complete group is strongly Dieudonné-complete.

 $^1\,$ The first author was supported by CONACYT (Mexico), grant number 57142.

http://dx.doi.org/10.1016/j.topol.2016.03.008 $0166-8641/\odot 2016$ Elsevier B.V. All rights reserved.

 $[\]ast\,$ Corresponding author.

E-mail addresses: hjuarez@matem.unam.mx (H. Juárez-Anguiano), isr.uami@gmail.com (I. Sánchez).

We introduce the concept of completely ω -balanced group and prove that to be completely ω -balanced is closed under taking subgroups and products. In addition, we show the following:

 ω -narrow \Rightarrow completely ω -balanced $\Rightarrow \omega$ -balanced

We prove that a topological group G admits a homeomorphic embedding as a subgroup into a product of strongly metrizable groups if and only if G is completely ω -balanced (Theorem 4.1). Using this fact we give a characterization of strong δ -completeness: a topological group is strongly δ -complete if and only if it is completely ω -balanced and G_{δ} -closed in its Raĭkov completion (see Theorem 4.6).

2. Preliminaries

Throughout the paper all spaces and topological groups are assumed to be Tychonoff (completely regular and Hausdorff). A family \mathcal{U} of subsets of a set X is *star-countable* if each $U \in \mathcal{U}$ intersects only countably many members of \mathcal{U} . If \mathcal{U} can be decomposed into a countable union of star-countable covers of X, we call it a σ -star-countable cover of X. A family \mathcal{V} of subsets of a set X is a *weak refinement* of a cover \mathcal{U} if it contains a subfamily which is a cover of X and a refinement of \mathcal{U} . A space X is called *strongly metrizable* if it has a σ -star-countable base. Clearly, every base for a space X is an open weak refinement of any cover of X. The following result is presented in [9].

Lemma 2.1. ([9, Lemma 5]) A metrizable space X is strongly metrizable if and only if every open cover of X has an open weak refinement which is σ -star-countable.

Given a topological group G with identity e, the symbol $\mathcal{N}(e)$ denotes the family of open neighborhoods of e. A subset V of a topological group G is called ω -good if there exists a countable family $\gamma \subset \mathcal{N}(e)$ such that for every $x \in V$, we can find $W \in \gamma$ with $xW \subseteq V$. The ω -good subsets were defined in the class of paratopological groups [7]. The following result permits us to prove Theorem 4.1.

Lemma 2.2. ([7, Lemma 3.10]) Every topological group G has a local base at the neutral element consisting of ω -good sets.

Given a topological group G with identity e, we denote by $\mathcal{N}^*(e)$ the family of ω -good sets containing the identity. By Lemma 2.2, the family $\mathcal{N}^*(e)$ is a local base for G at e.

A family \mathcal{U} of non-empty subsets of a topological group G is *dominated* by a family $\gamma \subseteq \mathcal{N}(e)$ if for every $U \in \mathcal{U}$ and $x \in U$ there exists $V \in \gamma$ such that $xV \subseteq U$.

Remember that a topological group G is called ω -narrow if for each $V \in \mathcal{N}(e)$ there exists a countable subset $A \subset G$ such that AV = VA = G. A topological group is ω -balanced if for each $U \in \mathcal{N}(e)$ there exists a countable subfamily γ of $\mathcal{N}(e)$ such that for each $g \in G$ there exists $V \in \gamma$ satisfying $gVg^{-1} \subset U$. The classes of ω -narrow and ω -balanced topological groups are closed under taking subgroups and products. The following results are known as Katz's theorem and Guran's theorem, respectively (see [1]).

Theorem 2.3. Let G be a topological group. Then the following conditions are equivalent:

- a) G is ω -balanced (respectively, ω -narrow);
- b) G admits an embedding as a subgroup into a product of metrizable (respectively, separable metrizable) groups.

All of other concepts and results about topological spaces and groups considered in this paper can be consulted in [2] and [1].

Download English Version:

https://daneshyari.com/en/article/4658015

Download Persian Version:

https://daneshyari.com/article/4658015

Daneshyari.com