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In the paper, we give new results about dimension of inverse limits with upper 
semicontinuous bonding functions. We also construct an upper semicontinuous 
function f : [0, 1] → 2[0,1] with the following properties: (1) the graph of f is an 
arc, (2) the graph of f is surjective, (3) the inverse limit lim←−−{[0, 1], f}

∞
n=1 contains 

a simple closed curve, and (4) the dimension of lim←−−{[0, 1], f}
∞
n=1 is 1. This answers 

a question by W.T. Ingram.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 2004, inverse limits of inverse sequences of compact metric spaces with upper semicontinuous bonding 
functions were introduced by W.T. Ingram and W.S. Mahavier [5,6]. They are a generalization of inverse 
limits of inverse sequences of compact metric spaces with continuous bonding functions.
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I. Banič and J. Kennedy drew attention to inverse limits of inverse sequences of unit intervals [0, 1] with 
a single upper semicontinuous bonding function whose graph is an arc [1]. They are a natural generalization 
of inverse limits of inverse sequences of unit intervals with a single continuous bonding function, since the 
graph of such a function is also an arc. This is a largely unexplored field of study in the theory of inverse 
limits of inverse sequences of compact metric spaces with upper semicontinuous bonding functions. In [3], 
W.T. Ingram posed a number of open problems concerning such inverse limits. One of them states:

Problem 1.1. ([3, Problem 4.15]) Suppose f : [0, 1] → 2[0,1] is an upper semicontinuous set-valued function 
whose graph is an arc. If the inverse limit lim←−−{[0, 1], f}∞n=1 is one-dimensional, can it contain a simple closed 
curve?

One of the purposes of this paper is to give the answer to that question in the positive.
Another purpose of this paper is to provide easy tools for determining dimension of inverse limits of 

inverse sequences of compact metric spaces with upper semicontinuous bonding functions. The research of 
the dimension of such inverse limits has been very intensive since their introduction; for more information 
see [4]. In present paper, we give new results about the dimension of such inverse limits – the results provide 
easy tools for determining dimension as well as for finding upper bounds for the dimension of such inverse 
limits. We demonstrate this when examining the inverse limit in the last section.

We proceed as follows. In Section 2, basic definitions, notation and some known results (that will be used 
later) are given. In Section 3, we give results about the dimension of inverse limits with upper semicontinuous 
bonding functions. At the end, in Section 4, we construct a function f : [0, 1] → 2[0,1] with the following 
properties:

1. the graph of f is an arc,
2. the graph of f is surjective,
3. the inverse limit lim←−−{[0, 1], f}∞n=1 contains a simple closed curve, and
4. dim(lim←−−{[0, 1], f}∞n=1) = 1.

2. Definitions and notation

If (X, d) is a compact metric space, then 2X denotes the set of all nonempty closed subsets of X.
A function f : X → 2Y is upper semicontinuous at the point x ∈ X provided that if V is any open set 

in Y containing f(x) then there is an open set U in X containing x such that f(t) ⊆ V for any t ∈ U ; f is 
called upper semicontinuous (abbreviated u.s.c.) if it is upper semicontinuous at each point of X.

The graph Γ(f) of a function f : X → 2Y is the set of all points (x, y) ∈ X × Y such that y ∈ f(x). We 
say that the graph of a function f : X → 2Y is surjective if for each y ∈ Y there is a point x ∈ X such that 
y ∈ f(x).

Ingram and Mahavier gave the following characterization of u.s.c. functions [4, p. 3]:

Theorem 2.1. Let X and Y be compact metric spaces and f : X → 2Y a function. Then f is u.s.c. if and 
only if its graph Γ(f) is closed in X × Y .

In this paper we deal with inverse sequences {Xn, fn}∞n=1, where Xn are compact metric spaces and 
fn : Xn+1 → 2Xn u.s.c. functions.

The inverse limit of an inverse sequence {Xn, fn}∞n=1 is defined to be the subspace of the product space ∏∞
n=1 Xn consisting of all x = (x1, x2, x3, . . .) ∈

∏∞
n=1 Xn, such that xn ∈ fn(xn+1) for each n. The inverse 

limit is denoted by lim←−−{Xn, fn}∞n=1.
Let {Xn, fn}∞n=1 be an inverse sequence of compact metric spaces with u.s.c. bonding functions. Let 

Gn = Γ(fn) for each positive integer n. Then
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