On a problem of Mauldin and Ulam about continuous images

Alessandro Fedeli ${ }^{\text {a,* }}$, Attilio Le Donne ${ }^{\text {b }}$
a Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá dell'Aquila, 67100 L'Aquila, Italy
b Dipartimento di Matematica, Universitá di Roma "La Sapienza", 00100 Rome, Italy

A R T I C L E I N F O

Article history:
Received 27 October 2015
Received in revised form 24
November 2015
Accepted 8 December 2015
Available online 14 December 2015
$M S C$:
4C05
54D55
54G20

Keywords:
Continuous image
Sequential space

Abstract

In this paper we give a solution to a question of Mauldin and Ulam about transformations preserving continuous images.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let E and F be two topological (e.g., metric) spaces. Let T be a transformation of E into F such that if $A, B \subset E$ and B is a continuous image of A, then $T(B)$ is a continuous image of $T(A)$ (we will say that T is a CI-map). In ([4], IV.3.) Mauldin and Ulam ask if such a map T must be continuous.

The aim of this paper is to solve this problem in a fairly complete manner. In particular we show precisely when a CI-map defined on a sequential space is continuous.

The reader is referred to [2] for notations and terminology not explicitly given. All spaces considered here will be Hausdorff.

2. The results

A space E is called: (i) sequential if for every non-closed subset A of E there exists a sequence $\left(x_{n}\right)_{n}$ of points of A converging to a point of the set $\bar{A} \backslash A$; (ii) almost sequential if for every non-isolated point there

[^0]is a non-trivial sequence converging to it; (iii) contrasequential provided it has no non-trivial convergent sequences (see [1]). Let us observe that every metric space is sequential. Moreover a map T between two topological spaces E and F is called sequentially continuous if for every sequence $\left(x_{n}\right)_{n}$ in E converging to a point $x \in X$, the image $\left(T\left(x_{n}\right)\right)_{n}$ converges to the point $T(x)$. Every continuous map is sequentially continuous and every sequentially continuous map whose domain is sequential is continuous.

Our first result will show that every CI-map satisfying a rather mild condition on the image is sequentially continuous.

Theorem 1. Let $T: E \rightarrow F$ be a CI-map where $\operatorname{Im}(T)$ is not contrasequential. Then T is sequentially continuous.

Proof. First observe that T cannot be constant (otherwise $\operatorname{Im}(T)$ would be contrasequential). We may assume, without loss of generality, that T is onto. First let us show that T is injective. In fact let us suppose that there are two distinct points x and y of E such that $T(x)=T(y)=a$. Take $b \in \operatorname{Im}(T)$ and let $z \in E$ such that $T(z)=b \neq a$. Then $A=\{x, y\}$ and $B=\{x, z\}$ are homeomorphic (in particular B is a continuous image of A), while $T(B)=\{a, b\}$ is not a continuous image of $T(A)=\{a\}$. A contradiction.

Claim. There exists a sequence $\left(p_{n}\right)_{n}$ in E, with distinct terms, converging to a point p such that the sequence $\left(T\left(p_{n}\right)\right)_{n}$ converges to $T(p)$.

Proof of Claim. Let $\left(q_{n}\right)_{n}$ be a non-trivial sequence in F converging to a point q. We may assume that $q_{n} \neq q_{m}$ whenever $n \neq m$. Let p_{n} and x be such that $T\left(p_{n}\right)=q_{n}$ for every n and $T(p)=q$. Clearly $\left(p_{n}\right)_{n}$ is a sequence with distinct terms. We claim that $\left(p_{n}\right)_{n}$ converges to p. If not, we may assume, without loss of generality, that the set $A=\left\{p_{n}: n \in \mathbb{N}\right\} \cup\{p\}$ is discrete. In fact A contains an infinite subset S such that $p \notin \bar{S}$, so we may replace A with $D \cup\{p\}$ where D is an infinite discrete subset of S (recall that every infinite Hausdorff space contains an infinite discrete subset). Now set $B=\left\{q_{n}: n \in \mathbb{N}\right\} \cup\{q\}$, $C=A \backslash\{p\}$ and $D=B \backslash\{q\}$. Since A and C are homeomorphic and T is a CI-map, it follows that $T(C)=T(A \backslash\{p\})=T(A) \backslash\{T(p)\}=B \backslash\{q\}=D$ is a continuous image of $T(A)=B$. Since B is compact and D is not, we reach a contradiction. Therefore the sequence $\left(p_{n}\right)_{n}$ converges to p.

Now we are ready to show that T is sequentially continuous. So let us take a sequence $\left(x_{n}\right)_{n}$ in E converging to a point $x \in X$ and let us prove that the image $\left(T\left(x_{n}\right)\right)_{n}$ converges to the point $T(x)$. Suppose not and let us set $A=\left\{p_{n}: n \in \mathbb{N}\right\} \cup\{p\}$ and $B=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\{x\}$. There is no loss of generality in assuming that $T(x)$ be isolated in $T(B)$. Since A and B are homeomorphic, it follows that $T(B)$ is a continuous image of the compact space $T(A)$. So $T(B)$ is compact too. Since $A \backslash\{p\}$ and $B \backslash\{x\}$ are homeomorphic (they are discrete and countably infinite) and T is a CI-map, it follows that the infinite discrete space $T(A \backslash\{p\})=T(A) \backslash\{T(p)\}$ is a continuous image of the compact space $T(B \backslash\{x\})=T(B) \backslash\{T(x)\}$. A contradiction. Therefore $\left(T\left(x_{n}\right)\right)_{n}$ converges to the point $T(x)$, and T is sequentially continuous.

From Theorem 1 we readily obtain the following

Corollary 1. Let $T: E \rightarrow F$ be a CI-map where E is sequential and $\operatorname{Im}(T)$ is not contrasequential. Then T is continuous.

Observe that the first part of the proof of Theorem 1 shows that every non-constant CI-map must be injective, so we have

Corollary 2. Let $T: E \rightarrow F$ be a non-constant CI-map where E is a non-discrete sequential space. T is continuous if and only if $\operatorname{Im}(T)$ is not contrasequential.

https://daneshyari.com/en/article/4658094

Download Persian Version:
https://daneshyari.com/article/4658094

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: afedeli@univaq.it (A. Fedeli), ledonne@mat.uniroma1.it (A. Le Donne).
 http://dx.doi.org/10.1016/j.topol.2015.12.005
 0166-8641/© 2015 Elsevier B.V. All rights reserved.

