

Diagonalizations of dense families

Maddalena Bonanzinga^a, Filippo Cammaroto^a, Bruno Antonio Pansera^a, Boaz Tsaban^{b,*,1}

^a Dipartimento di Matematica, Universitá di Messina, 98166 Messina, Italy

^b Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel

A R T I C L E I N F O

Article history: Received 15 July 2013 Accepted 7 January 2014

MSC: primary 37F20 secondary 26A03, 03E75, 03E17

Keywords: Dense families Selection principles $S_{fin}(O, O)$ Hurewicz property Menger property ${\mathop{S_1(O,O)}\limits_{C''}}$ Rothberger property $S_{\rm fin}({\rm D},{\rm D})$ $\mathsf{S}_{\mathrm{fin}}(\mathfrak{D},\mathfrak{D})$ $S_{fin}(\mathcal{D}, \mathcal{D})$ M-separable Selectively separable SS $S_1(D,D)$ $\mathsf{S}_1(\mathfrak{D},\mathfrak{D})$ $\mathsf{S}_1(\mathcal{D},\mathcal{D})$ **R**-separable $S_{fin}(D_o, D)$ Tiny sequence $\mathsf{S}_{\mathrm{fin}}(\mathcal{D},\mathcal{D})$ $S_1(D_o, D)$ $S_1(\mathcal{D}, \mathcal{D})$ 1-tiny sequence Selectively c.c.c. $S_{fin}(O, D)$ Weakly Hurewicz Weakly Menger

ABSTRACT

We develop a unified framework for the study of classic and new properties involving diagonalizations of dense families in topological spaces. We provide complete classification of these properties. Our classification draws upon a large number of methods and constructions scattered in the literature, and on several novel results concerning the classic properties.

© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: mbonanzinga@unime.it (M. Bonanzinga), camfil@unime.it (F. Cammaroto), bpansera@unime.it (B.A. Pansera), tsaban@math.biu.ac.il (B. Tsaban).

URL: http://www.cs.biu.ac.il/~tsaban (B. Tsaban).

¹ Current address: Department of Mathematics, Weizmann Institute of Science, Rhovot 7610001, Israel.

 $\begin{array}{l} S_1(O,D)\\ \mathrm{Weakly}\ C''\\ S_1(\mathcal{O},\mathcal{D})\\ \mathrm{Weakly}\ \mathrm{Rothberger} \end{array}$

1. Introduction

The following diagonalization prototypes are ubiquitous in the mathematical literature (see, e.g., the surveys [29,19,31]):

 $S_1(\mathscr{A},\mathscr{B})$: For all $\mathcal{U}_1,\mathcal{U}_2,\ldots\in\mathscr{A}$, there are $U_1\in\mathcal{U}_1,U_2\in\mathcal{U}_2,\ldots$ such that $\{U_n: n\in\mathbb{N}\}\in\mathscr{B}$. $S_{\mathrm{fin}}(\mathscr{A},\mathscr{B})$: For all $\mathcal{U}_1,\mathcal{U}_2,\ldots\in\mathscr{A}$, there are finite $\mathcal{F}_1\subseteq\mathcal{U}_1,\mathcal{F}_2\subseteq\mathcal{U}_2,\ldots$ such that $\bigcup_n \mathcal{F}_n\in\mathscr{B}$.

The papers [25,18] have initiated the simultaneous consideration of these properties in the case where \mathscr{A} and \mathscr{B} are important families of open covers of a topological space X. This unified study of topological properties, that were previously studied separately, had tremendous success, some of which were surveyed in the above-mentioned surveys. The field of *selection principles* is growing rapidly, and dozens of new papers appeared since these survey articles were published. The purpose of the present paper is to initiate a similar program for the case where \mathscr{A} and \mathscr{B} are dense families, as we now define.

Definition 1.1. Let X be a topological space. A family $\mathcal{U} \subseteq P(X)$ is a *dense family* if $\bigcup \mathcal{U}$ is a dense subset of X. A family $\mathcal{U} \subseteq P(X)$ is in:

D: if \mathcal{U} is dense; D_o: if \mathcal{U} is dense and all members of \mathcal{U} are open; and O: if \mathcal{U} is an open cover of X.

In other words, \mathcal{U} is a dense family if each open set in X intersects some member of \mathcal{U} . Note that

$$O \subseteq D_o \subseteq D$$

Every element of D is refined by a dense family of singletons. It follows, for example, that $S_{fin}(D, D)$ is equivalent to the following property, studied under various names in the literature (see Table 1 below):

For each sequence A_n , $n \in \mathbb{N}$, such that $\overline{A_n} = X$ for all n, there are finite sets $F_n \subseteq A_n$, $n \in \mathbb{N}$, such that $\overline{\bigcup_n F_n} = X$.

We study all properties $S(\mathscr{A}, \mathscr{B})$ for $S \in \{S_1, S_{fin}\}$ and $\mathscr{A}, \mathscr{B} \in \{O, D_o, D\}$, by making use of their inter-connections. This approach is expected to have impact beyond these properties, not only concerning properties that imply or are implied by the above-mentioned properties (e.g., the corresponding game-theoretic properties), but also concerning formally unrelated properties that have a similar flavor.

The properties we are studying here were studied in the literature under various, sometimes pairwise incompatible, names. Examples are given in Table 1 below, with some references. We do not give references for $S_{fin}(O, O)$ and $S_1(O, O)$, because there are hundreds of them. Instead, we refer to the above-mentioned surveys. In this table, by *obsolete* we mean that nowadays the name stands for another property.

A topological space is \mathscr{A} -Lindelöf ($\mathscr{A} \in \{D, D_o, O, ...\}$) if each member of \mathscr{A} contains a countable member of \mathscr{A} . If X satisfies $\mathsf{S}_{\mathrm{fin}}(\mathscr{A}, \mathscr{A})$, then X is \mathscr{A} -Lindelöf. Thus, $\mathsf{S}_{\mathrm{fin}}(O, O)$ spaces are Lindelöf, $\mathsf{S}_{\mathrm{fin}}(D, D)$ spaces are separable, and $\mathsf{S}_{\mathrm{fin}}(D_o, D)$ spaces are D_o -Lindelöf, or equivalently, c.c.c. (i.e., such that every

Download English Version:

https://daneshyari.com/en/article/4658803

Download Persian Version:

https://daneshyari.com/article/4658803

Daneshyari.com